College of Agriculture
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/4
As the foundation of the land grant mission at Montana State University, the College of Agriculture and the Montana Agricultural Experiment Station provide instruction in traditional and innovative degree programs and conduct research on old and new challenges for Montana’s agricultural community. This integration creates opportunities for students and faculty to excel through hands-on learning, to serve through campus and community engagement, to explore unique solutions to distinct and interesting questions and to connect Montanans with the global community through research discoveries and outreach.
Browse
4 results
Search Results
Item Environmentally clean access to Antarctic subglacial aquatic environments(2020-10) Michaud, Alexander B.; Vick-Majors, Trista J.; Achberger, Amanda M.; Skidmore, Mark L.; Christner, Brent C.; Tranter, Martyn; Priscu, John C.Subglacial Antarctic aquatic environments are important targets for scientific exploration due to the unique ecosystems they support and their sediments containing palaeoenvironmental records. Directly accessing these environments while preventing forward contamination and demonstrating that it has not been introduced is logistically challenging. The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project designed, tested and implemented a microbiologically and chemically clean method of hot-water drilling that was subsequently used to access subglacial aquatic environments. We report microbiological and biogeochemical data collected from the drilling system and underlying water columns during sub-ice explorations beneath the McMurdo and Ross ice shelves and Whillans Ice Stream. Our method reduced microbial concentrations in the drill water to values three orders of magnitude lower than those observed in Whillans Subglacial Lake. Furthermore, the water chemistry and composition of microorganisms in the drill water were distinct from those in the subglacial water cavities. The submicron filtration and ultraviolet irradiation of the water provided drilling conditions that satisfied environmental recommendations made for such activities by national and international committees. Our approach to minimizing forward chemical and microbiological contamination serves as a prototype for future efforts to access subglacial aquatic environments beneath glaciers and ice sheets.Item Microbial Community Structure of Subglacial Lake Whillans, West Antarctica(2016-09) Achberger, Amanda M.; Christner, Brent C.; Michaud, Alexander B.; Priscu, John C.; Skidmore, Mark L.; Vick-Majors, Trista J.Subglacial Lake Whillans (SLW) is located beneath 800 m of ice on the Whillans Ice Stream in West Antarctica and was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules) data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax) and archaea (Candidatus Nitrosoarchaeum) related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34-36 cm) supported the hypothesis that methane cycling occurs beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several operational taxonomic units abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella), suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new organic matter that sustains a microbial ecosystem beneath the West Antarctic Ice Sheet.Item Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica(2016-05) Michaud, Alexander B.; Skidmore, Mark L.; Mitchell, Andrew C.; Vick-Majors, Trista J.Subglacial Lake Whillans (SLW), West Antarctica, is an active component of the subglacial hydrological network located beneath 800 m of ice. The fill and drain behavior of SLW leads to long (years to decades) water residence times relative to those in mountain glacier systems. Here, we present the aqueous geochemistry of the SLW water column and pore waters from a 38-cm-long sediment core. Stable isotopes indicate that the water is primarily sourced from basal-ice melt with a minor contribution from seawater that reaches a maximum of ∼6% in pore water at the bottom of the sediment core. Silicate weathering products dominate the crustal (non-seawater) component of lake- and pore-water solutes, and there is evidence for cation exchange processes within the clay-rich lake sediments. The crustal solute component ranges from 6 meq L–1 in lake waters to 17 meq L–1 in the deepest pore waters. The pore-water profiles of the major dissolved ions indicate a more concentrated solute source at depth (>38 cm). The combination of significant seawater and crustal components to SLW lake and sediment pore waters in concert with ion exchange processes result in a weathering regime that contrasts with other subglacial systems. The results also indicate cycling of marine water sourced from the sediments back to the ocean during lake drainage events.Item Chemolithotrophic primary production in a subglacial ecosystem(2014-10) Boyd, Eric S.; Hamilton, Trinity L.; Havig, Jeff R.; Skidmore, Mark L.; Shock, Everett L.Glacial comminution of bedrock generates fresh mineral surfaces capable of sustaining chemotrophic microbial communities under the dark conditions that pervade subglacial habitats. Geochemical and isotopic evidence suggests that pyrite oxidation is a dominant weathering process generating protons that drive mineral dissolution in many subglacial systems. Here, we provide evidence correlating pyrite oxidation with chemosynthetic primary productivity and carbonate dissolution in subglacial sediments sampled from Robertson Glacier (RG), Alberta, Canada. Quantification and sequencing of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) transcripts suggest that populations closely affiliated with Sideroxydans lithotrophicus, an iron sulfide-oxidizing autotrophic bacterium, are abundant constituents of microbial communities at RG. Microcosm experiments indicate sulfate production during biological assimilation of radiolabeled bicarbonate. Geochemical analyses of subglacial meltwater indicate that increases in sulfate levels are associated with increased calcite and dolomite dissolution. Collectively, these data suggest a role for biological pyrite oxidation in driving primary productivity and mineral dissolution in a subglacial environment and provide the first rate estimate for bicarbonate assimilation in these ecosystems. Evidence for lithotrophic primary production in this contemporary subglacial environment provides a plausible mechanism to explain how subglacial communities could be sustained in near-isolation from the atmosphere during glacial-interglacial cycles.