College of Agriculture

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/4

As the foundation of the land grant mission at Montana State University, the College of Agriculture and the Montana Agricultural Experiment Station provide instruction in traditional and innovative degree programs and conduct research on old and new challenges for Montana’s agricultural community. This integration creates opportunities for students and faculty to excel through hands-on learning, to serve through campus and community engagement, to explore unique solutions to distinct and interesting questions and to connect Montanans with the global community through research discoveries and outreach.

Browse

Search Results

Now showing 1 - 10 of 14
  • Thumbnail Image
    Item
    The Embryological Landscape of Mayer-Rokitansky-Kuster-Hauser Syndrome: Genetics and Environmental Factors
    (Yale Journal of Biology and Medicine, 2021-12) Kyei-Barffour, Isaac; Margetts, Miranda; Vash-Margita, Alla; Pelosi, Emanuele
    Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a disorder caused by Müllerian ducts dysgenesis affecting 1 in 5000 women with a typical 46,XX karyotype. The etiology of MRKH syndrome is complex and largely unexplained. Familial clustering suggests a genetic component and the spectrum of clinical presentations seems consistent with an inheritance pattern characterized by incomplete penetrance and variable expressivity. Mutations of several candidate genes have been proposed as possible causes based on genetic analyses of human patients and animal models. In addition, studies of monozygotic twins with discordant phenotypes suggest a role for epigenetic changes following potential exposure to environmental compounds. The spectrum of clinical presentations is consistent with intricate disruptions of shared developmental pathways or signals during early organogenesis. However, the lack of functional validation and translational studies have limited our understanding of the molecular mechanisms involved in this condition. The clinical management of affected women, including early diagnosis, genetic testing of MRKH syndrome, and the implementation of counseling strategies, is significantly impeded by these knowledge gaps. Here, we illustrate the embryonic development of tissues and organs affected by MRKH syndrome, highlighting key pathways that could be involved in its pathogenesis. In addition, we will explore the genetics of this condition, as well as the potential role of environmental factors, and discuss their implications to clinical practice.
  • Thumbnail Image
    Item
    From dinosaurs to birds: a tail of evolution
    (2014-05) Rashid, Dana J.; Chapman, Susan C.; Larsson, Hans C. E.; Organ, Chris L.; Merzdorf, Christa; Bradley, Roger S.; Horner, John R.
    A particularly critical event in avian evolution was the transition from long- to short-tailed birds. Primitive bird tails underwent significant alteration, most notably reduction of the number of caudal vertebrae and fusion of the distal caudal vertebrae into an ossified pygostyle. These changes, among others, occurred over a very short evolutionary interval, which brings into focus the underlying mechanisms behind those changes. Despite the wealth of studies delving into avian evolution, virtually nothing is understood about the genetic and developmental events responsible for the emergence of short, fused tails. In this review, we summarize the current understanding of the signaling pathways and morphological events that contribute to tail extension and termination and examine how mutations affecting the genes that control these pathways might influence the evolution of the avian tail. To generate a list of candidate genes that may have been modulated in the transition to short-tailed birds, we analyzed a comprehensive set of mouse mutants. Interestingly, a prevalent pleiotropic effect of mutations that cause fused caudal vertebral bodies (as in the pygostyles of birds) is tail truncation. We identified 23 mutations in this class, and these were primarily restricted to genes involved in axial extension. At least half of the mutations that cause short, fused tails lie in the Notch/Wnt pathway of somite boundary formation or differentiation, leading to changes in somite number or size. Several of the mutations also cause additional bone fusions in the trunk skeleton, reminiscent of those observed in primitive and modern birds. All of our findings were correlated to the fossil record. An open question is whether the relatively sudden appearance of short-tailed birds in the fossil record could be accounted for, at least in part, by the pleiotropic effects generated by a relatively small number of mutational events.
  • Thumbnail Image
    Item
    Bile Salts Affect Expression of Escherichia coli O157:H7 Genes for Virulence and IronAcquisition, and Promote Growth under Iron Limiting Conditions
    (2013-09) Hamner, Steve; McInnerney, Kathleen; Williamson, Kerry S.; Franklin, Michael J.; Ford, Tim E.
    Bile salts exhibit potent antibacterial properties, acting as detergents to disrupt cell membranes and as DNA-damaging agents. Although bacteria inhabiting the intestinal tract are able to resist bile’s antimicrobial effects, relatively little is known about how bile influences virulence of enteric pathogens. Escherichia coli O157:H7 is an important pathogen of humans, capable of causing severe diarrhea and more serious sequelae. In this study, the transcriptome response of E. coli O157:H7 to bile was determined. Bile exposure induced significant changes in mRNA levels of genes related to virulence potential, including a reduction of mRNA for the 41 genes making up the locus of enterocyte effacement (LEE) pathogenicity island. Bile treatment had an unusual effect on mRNA levels for the entire flagella-chemotaxis regulon, resulting in two- to four-fold increases in mRNA levels for genes associated with the flagella hook-basal body structure, but a two-fold decrease for “late” flagella genes associated with the flagella filament, stator motor, and chemotaxis. Bile salts also caused increased mRNA levels for seventeen genes associated with iron scavenging and metabolism, and counteracted the inhibitory effect of the iron chelating agent 2,2’-dipyridyl on growth of E. coli O157:H7. These findings suggest that E. coli O157:H7 may use bile as an environmental signal to adapt to changing conditions associated with the small intestine, including adaptation to an iron-scarce environment.
  • Thumbnail Image
    Item
    Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes)
    (2014-07) Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Ramaley, R. F.; Schuster, Stephan C.; Steinke, L.; Bryant, Donald A.
    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.
  • Thumbnail Image
    Item
    Draft Genome Sequence of a Sulfide-Oxidizing, Autotrophic Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus sp. Strain MS-G (Chloroflexi)
    (2014-09) Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; Schuster, Stephan C.; Bryant, Donald A.; Ward, David M.
    The draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain MS-G (Chloroflexi), isolated from Mushroom Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 4,784,183 bp in 251 contigs. The draft genome is predicted to encode 4,059 protein coding genes, 49 tRNA encoding genes, and 3 rRNA operons.
  • Thumbnail Image
    Item
    Occurrence of Far-Red Light Photoacclimation (FaRLiP) in Diverse Cyanobacteria
    (2014-12) Gan, Fei; Shen, Gaozhong; Bryant, Donald A.
    Cyanobacteria have evolved a number of acclimation strategies to sense and respond to changing nutrient and light conditions. Leptolyngbya sp. JSC-1 was recently shown to photoacclimate to far-red light by extensively remodeling its photosystem (PS) I, PS II and phycobilisome complexes, thereby gaining the ability to grow in far-red light. A 21-gene photosynthetic gene cluster (rfpA/B/C, apcA2/B2/D2/E2/D3, psbA3/D3/C2/B2/ H2/A4, psaA2/B2/L2/I2/F2/J2) that is specifically expressed in far-red light encodes the core subunits of the three major photosynthetic complexes. The growth responses to far-red light were studied here for five additional cyanobacterial strains, each of which has a gene cluster similar to that in Leptolyngbya sp. JSC-1. After acclimation all five strains could grow continuously in far-red light. Under these growth conditions each strain synthesizes chlorophylls d, f and a after photoacclimation, and each strain produces modified forms of PS I, PS II (and phycobiliproteins) that absorb light between 700 and 800 nm. We conclude that these photosynthetic gene clusters are diagnostic of the capacity to photoacclimate to and grow in far-red light. Given the diversity of terrestrial environments from which these cyanobacteria were isolated, it is likely that FaRLiP plays an important role in optimizing photosynthesis in terrestrial environments.
  • Thumbnail Image
    Item
    Comparative genomics and functional analysis of rhamnose catabolic pathways and regulons in Bacteria
    (2013-12) Rodionova, I. A.; Li, X.; Thiel, Vera; Stolyar, S.; Stanton, K.; Frederickson, J. K.; Bryant, Donald A.; Osterman, A. L.; Best, A. A.; Rodionov, D. A.
    L-rhamnose (L-Rha) is a deoxy-hexose sugar commonly found in nature. L-Rha catabolic pathways were previously characterized in various bacteria including Escherichia coli. Nevertheless, homology searches failed to recognize all the genes for the complete L-Rha utilization pathways in diverse microbial species involved in biomass decomposition. Moreover, the regulatory mechanisms of L-Rha catabolism have remained unclear in most species. A comparative genomics approach was used to reconstruct the L-Rha catabolic pathways and transcriptional regulons in the phyla Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, and Thermotogae. The reconstructed pathways include multiple novel enzymes and transporters involved in the utilization of L-Rha and L-Rha-containing polymers. Large-scale regulon inference using bioinformatics revealed remarkable variations in transcriptional regulators for L-Rha utilization genes among bacteria. A novel bifunctional enzyme, L-rhamnulose-phosphate aldolase (RhaE) fused to L-lactaldehyde dehydrogenase (RhaW), which is not homologous to previously characterized L-Rha catabolic enzymes, was identified in diverse bacteria including Chloroflexi, Bacilli, and Alphaproteobacteria. By using in vitro biochemical assays we validated both enzymatic activities of the purified recombinant RhaEW proteins from Chloroflexus aurantiacus and Bacillus subtilis. Another novel enzyme of the L-Rha catabolism, L-lactaldehyde reductase (RhaZ), was identified in Gammaproteobacteria and experimentally validated by in vitro enzymatic assays using the recombinant protein from Salmonella typhimurium. C. aurantiacus induced transcription of the predicted L-Rha utilization genes when L-Rha was present in the growth medium and consumed L-Rha from the medium. This study provided comprehensive insights to L-Rha catabolism and its regulation in diverse Bacteria.
  • Thumbnail Image
    Item
    Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi
    (2012-05) Liu, Zhenhua; Frigaard, N. U.; Vogl, K.; Iino, T.; Ohkuma, M.; Overmann, J.; Bryant, Donald A.
    Prior to the recent discovery of Ignavibacterium album (I. album), anaerobic photoautotrophic green sulfur bacteria (GSB) were the only members of the bacterial phylum Chlorobi that had been grown axenically. In contrast to GSB, sequence analysis of the 3.7-Mbp genome of I. album shows that this recently described member of the phylum Chlorobi is a chemoheterotroph with a versatile metabolism. I. album lacks genes for photosynthesis and sulfur oxidation but has a full set of genes for flagella and chemotaxis. The occurrence of genes for multiple electron transfer complexes suggests that I. album is capable of organoheterotrophy under both oxic and anoxic conditions. The occurrence of genes encoding enzymes for CO2 fixation as well as other enzymes of the reductive TCA cycle suggests that mixotrophy may be possible under certain growth conditions. However, known biosynthetic pathways for several amino acids are incomplete; this suggests that I. album is dependent upon on exogenous sources of these metabolites or employs novel biosynthetic pathways. Comparisons of I. album and other members of the phylum Chlorobi suggest that the physiology of the ancestors of this phylum might have been quite different from that of modern GSB.
  • Thumbnail Image
    Item
    Genome Sequence of the Thermophilic Cyanobacterium Thermosynechococcus sp. Strain NK55a
    (2014-01) Stolyar, S.; Liu, Zhenhua; Thiel, Vera; Tomsho, Lynn P.; Pinel, N.; Nelson, William C.; Lindemann, S.; Romine, Margaret F.; Haruta, S.; Schuster, Stephan C.; Bryant, Donald A.; Frederickson, J. K.
    The genome of the unicellular cyanobacterium Thermosynechococcus sp. strain NK55a, isolated from the Nakabusa hot spring, Nagano Prefecture, Japan, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to contain 2,358 protein-encoding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified.
  • Thumbnail Image
    Item
    Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium “Chlorochromatium aggregatum.”
    (2013-11) Liu, Zhenhua; Müller, J.; Li, T.; Alvey, R. M.; Vogl, K.; Frigaard, N. U.; Rockwell, Nathan C.; Tomsho, Lynn P.; Schuster, Stephan C.; Henke, P.; Rohde, M.; Overmann, J.; Bryant, Donald A.
    Background: ‘Chlorochromatium aggregatum’ is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. ‘Chlorochromatium aggregatum’ is a motile, barrel-shaped aggregate formed from a single cell of ‘Candidatus Symbiobacter mobilis”, a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium. Results: We analyzed the complete genome sequences of both organisms to understand the basis for this symbiosis. Chl. chlorochromatii has acquired relatively few symbiosis-specific genes; most acquired genes are predicted to modify the cell wall or function in cell-cell adhesion. In striking contrast, ‘Ca. S. mobilis’ appears to have undergone massive gene loss, is probably no longer capable of independent growth, and thus may only reproduce when consortia divide. A detailed model for the energetic and metabolic bases of the dependency of ‘Ca. S. mobilis’ on Chl. chlorochromatii is described. Conclusions: Genomic analyses suggest that three types of interactions lead to a highly sophisticated relationship between these two organisms. Firstly, extensive metabolic exchange, involving carbon, nitrogen, and sulfur sources as well as vitamins, occurs from the epibiont to the central bacterium. Secondly, ‘Ca. S. mobilis’ can sense and move towards light and sulfide, resources that only directly benefit the epibiont. Thirdly, electron cycling mechanisms, particularly those mediated by quinones and potentially involving shared protonmotive force, could provide an important basis for energy exchange in this and other symbiotic relationships.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.