College of Agriculture

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/4

As the foundation of the land grant mission at Montana State University, the College of Agriculture and the Montana Agricultural Experiment Station provide instruction in traditional and innovative degree programs and conduct research on old and new challenges for Montana’s agricultural community. This integration creates opportunities for students and faculty to excel through hands-on learning, to serve through campus and community engagement, to explore unique solutions to distinct and interesting questions and to connect Montanans with the global community through research discoveries and outreach.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Characterization of an Endophytic Gloeosporium sp. and Its Novel Bioactivity with “Synergistans”
    (2014-12) Schaible, George A.; Strobel, Gary A.; Mends, Morgan Tess; Geary, Brad; Sears, Joe
    Gloeosporium sp. (OR-10) was isolated as an endophyte of Tsuga heterophylla (Western hemlock). Both ITS and 18S sequence analyses indicated that the organism best fits either Hypocrea spp. or Trichoderma spp., but neither of these organisms possess conidiophores associated with acervuli, in which case the endophytic isolate OR-10 does. Therefore, the preferred taxonomic assignment was primarily based on the morphological features of the organism as one belonging to the genus Gloeosporium sp. These taxonomic observations clearly point out that limited ITS and 18S sequence information can be misleading when solely used in making taxonomic assignments. The volatile phase of this endophyte was active against a number of plant pathogenic fungi including Phytophthora palmivora, Rhizoctonia solani, Ceratocystis ulmi, Botrytis cinerea, and Verticillium dahliae. Among several terpenes and furans, the most abundantly produced compound in the volatile phase was 6-pentyl-2H-pyran-2-one, a compound possessing antimicrobial activities. When used in conjunction with microliter amounts of any in a series of esters or isobutyric acid, an enhanced inhibitory response occurred with each test fungus that was greater than that exhibited by Gloeosporium sp. or the compounds tested individually. Compounds behaving in this manner are hereby designated “synergistans.” An expression of the “median synergistic effect,” under prescribed conditions, has been termed the mSE50. This value describes the amount of a potential synergistan that is required to yield an additional median 50 % inhibition of a target organism. In this report, the mSE50s are reported for a series of esters and isobutyric acid. The results indicated that isoamyl acetate, allyl acetate, and isobutyric acid generally possessed the lowest mSE50 values. The value and potential importance of these microbial synergistic effects to the microbial environment are also discussed.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.