Microbiology & Cell Biology
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/10
Browse
25 results
Search Results
Item The voltage sensing phosphatase (VSP) localizes to the apical membrane of kidney tubule epithelial cells(2019-04) Ratzan, Wil; Rayaprolu, Vamseedhar; Killian, Scott E.; Bradley, Roger S.; Kohout, Susy C.Voltage-sensing phosphatases (VSPs) are transmembrane proteins that couple changes in membrane potential to hydrolysis of inositol signaling lipids. VSPs catalyze the dephosphorylation of phosphatidylinositol phosphates (PIPs) that regulate diverse aspects of cell membrane physiology including cell division, growth and migration. VSPs are highly conserved among chordates, and their RNA transcripts have been detected in the adult and embryonic stages of frogs, fish, chickens, mice and humans. However, the subcellular localization and biological function of VSP remains unknown. Using reverse transcriptase-PCR (RT-PCR), we show that both Xenopus laevis VSPs (Xl-VSP1 and Xl-VSP2) mRNAs are expressed in early embryos, suggesting that both Xl-VSPs are involved in early tadpole development. To understand which embryonic tissues express Xl-VSP mRNA, we used in situ hybridization (ISH) and found Xl-VSP mRNA in both the brain and kidney of NF stage 32-36 embryos. By Western blot analysis with a VSP antibody, we show increasing levels of Xl-VSP protein in the developing embryo, and by immunohistochemistry (IHC), we demonstrate that Xl-VSP protein is specifically localized to the apical membrane of both embryonic and adult kidney tubules. We further characterized the catalytic activity of both Xl-VSP homologs and found that while Xl-VSP1 catalyzes 3- and 5-phosphate removal, Xl-VSP2 is a less efficient 3-phosphatase with different substrate specificity. Our results suggest that Xl-VSP1 and Xl-VSP2 serve different functional roles and that VSPs are an integral component of voltage-dependent PIP signaling pathways during vertebrate kidney tubule development and function.Item Metabolic Responses Induced by Compression of Chondrocytes in Variable-Stiffness Microenvironments(2017-09) McCutchen, Carley N.; Zignego, Donald L.; June, Ronald K.Cells sense and respond to mechanical loads in a process called mechanotransduction. These processes are disrupted in the chondrocytes of cartilage during joint disease. A key driver of cellular mechanotransduction is the stiffness of the surrounding matrix. Many cells are surrounded by extracellular matrix that allows for tissue mechanical function. Although prior studies demonstrate that extracellular stiffness is important in cell differentiation, morphology and phenotype, it remains largely unknown how a cell’s biological response to cyclical loading varies with changes in surrounding substrate stiffness. Understanding these processes is important for understanding cells that are cyclically loaded during daily in vivo activities (e.g. chondrocytes and walking). This study uses high-performance liquid chromatography - mass spectrometry to identify metabolomic changes in primary chondrocytes under cyclical compression for 0-30 minutes in low- and high- stiffness environments. Metabolomic analysis reveals metabolites and pathways that are sensitive to substrate stiffness, duration of cyclical compression, and a combination of both suggesting changes in extracellular stiffness in vivo alter mechanosensitive signaling. Our results further suggest that cyclical loading minimizes matrix deterioration and increases matrix production in chondrocytes. This study shows the importance of modeling in vivo stiffness with in vitro models to understand cellular mechanotransduction.Item Mechanobiological implications of articular cartilage crystals(2017-03) Carlson, Alyssa K.; McCutchen, Carley N.; June, Ronald K.PURPOSE OF REVIEW: Calcium crystals exist in both pathological and normal articular cartilage. The prevalence of these crystals dramatically increases with age, and crystals are typically found in osteoarthritic cartilage and synovial fluid. Relatively few studies have examined the effects of crystals on cartilage biomechanics or chondrocyte mechanotransduction. The purpose of this review is to describe how crystals could influence cartilage biomechanics and mechanotransduction in osteoarthritis. RECENT FINDINGS: Crystals are found in both loaded and unloaded regions of articular cartilage. Exogenous crystals, in combination with joint motion, result in substantial joint inflammation. Articular cartilage vesicles promote crystal formation, and these vesicles are found near the periphery of chondrocytes. Crystallographic studies report monoclinic symmetry for synthetic crystals, suggesting that crystals will have a large stiffness compared with the cartilage extracellular matrix, the pericellular matrix, or the chondrocyte. This stiffness imbalance may cause crystal-induced dysregulation of chondrocyte mechanotransduction promoting both aging and osteoarthritis chondrocyte phenotypes. SUMMARY: Because of their high stiffness compared with cartilage matrix, crystals likely alter chondrocyte mechanotransduction, and high concentrations of crystals within cartilage may alter macroscale biomechanics. Future studies should focus on understanding the mechanical properties of joint crystals and developing methods to understand how crystals affect chondrocyte mechanotransduction.Item Conditional Synaptic Vesicle Markers for Drosophila(2019-01) Williams, Jessica L.; Shearin, Harold K.; Stowers, R. StevenThe release of neurotransmitters from synaptic vesicles (SVs) at pre-synaptic release sites is the principle means by which information transfer between neurons occurs. Knowledge of the location of SVs within a neuron can thus provide valuable clues about the location of neurotransmitter release within a neuron and the downstream neurons to which a given neuron is connected, important information for understanding how neural circuits generate behavior. Here the development and characterization of four conditional tagged SV markers for Drosophila melanogaster is presented. This characterization includes evaluation of conditionality, specificity for SV localization, and sensitivity of detection in diverse neuron subtypes. These four SV markers are genome-edited variants of the synaptic vesicle-specific protein Rab3. They depend on either the B2 or FLP recombinases for conditionality, and incorporate GFP or mCherry fluorescent proteins, or FLAG or HA epitope tags, for detection.Item Reinterpretation of the substrate specificity of the voltage-sensing phosphatase during dimerization(2019-02) Kruse, Martin; Kohout, Susy C.; Hille, BertilVoltage-sensing phosphatases (VSPs) cleave both 3- and 5-phosphates from inositol phospholipids in response to membrane depolarization. When low concentrations of Ciona intestinalis VSP are expressed in Xenopus laevis oocytes, the 5-phosphatase reaction can be observed during large membrane depolarizations. When higher concentrations are expressed, the 5-phosphatase activity is observed with smaller depolarizations, and the 3-phosphatase activity is revealed with strong depolarization. Here we ask whether this apparent induction of 3-phosphatase activity is attributable to the dimerization that has been reported when VSP is expressed at higher concentrations. Using a simple kinetic model, we show that these enzymatic phenomena can be understood as an emergent property of a voltage-dependent enzyme with invariant substrate selectivity operating in the context of endogenous lipid-metabolizing enzymes present in oocytes. Thus, a switch of substrate specificity with dimerization need not be invoked to explain the appearance of 3-phosphatase activity at high VSP concentrations.Item Saccades Trigger Predictive Updating of Attentional Topography in Area V4(2018-04) Marino, Alexandria C.; Mazer, James A.During natural behavior, saccades and attention act together to allocate limited neural resources. Attention is generally mediated by retinotopic visual neurons; therefore, specific neurons representing attended features change with each saccade. We investigated the neural mechanisms that allow attentional targeting in the face of saccades. Specifically, we looked for predictive changes in attentional modulation state or receptive field position that could stabilize attentional representations across saccades in area V4, known to be necessary for attention-dependent behavior. We recorded from neurons in monkeys performing a novel spatiotopic attention task, in which performance depended on accurate saccade compensation. Measurements of attentional modulation revealed a predictive attentional “hand-off” corresponding to a presaccadic transfer of attentional state from neurons inside the attentional focus before the saccade to those that will be inside the focus after the saccade. The predictive nature of the hand-off ensures that attentional brain maps are properly configured immediately after each saccade.Item Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens(2018-06) Rashid, Dana J.; Surya, Kevin; Chiappe, Luis M.; Carroll, Nathan; Garrett, Kimball L.; Varghese, Bino; Bailleul, Alida M.; O'Connor, Jingmai K.; Chapman, Susan C.; Horner, John R.The avian tail played a critical role in the evolutionary transition from long- to short-tailed birds, yet its ontogeny in extant birds has largely been ignored. This deficit has hampered efforts to effectively identify intermediate species during the Mesozoic transition to short tails. Here we show that fusion of distal vertebrae into the pygostyle structure does not occur in extant birds until near skeletal maturity, and mineralization of vertebral processes also occurs long after hatching. Evidence for post-hatching pygostyle formation is also demonstrated in two Cretaceous specimens, a juvenile enantiornithine and a subadult basal ornithuromorph. These findings call for reinterpretations of Zhongornis haoae, a Cretaceous bird hypothesized to be an intermediate in the long- to short-tailed bird transition, and of the recently discovered coelurosaur tail embedded in amber. Zhongornis, as a juvenile, may not yet have formed a pygostyle, and the amber-embedded tail specimen is reinterpreted as possibly avian. Analyses of relative pygostyle lengths in extant and Cretaceous birds suggests the number of vertebrae incorporated into the pygostyle has varied considerably, further complicating the interpretation of potential transitional species. In addition, this analysis of avian tail development reveals the generation and loss of intervertebral discs in the pygostyle, vertebral bodies derived from different kinds of cartilage, and alternative modes of caudal vertebral process morphogenesis in birds. These findings demonstrate that avian tail ontogeny is a crucial parameter specifically for the interpretation of Mesozoic specimens, and generally for insights into vertebrae formation.Item Elongator and codon bias regulate protein levels in mammalian peripheral neurons(2018-03) Goffena, Joy; Lefcort, Frances; Zhang, Yongqing; Lehrmann, Elin; Chaverra, Marta; Felig, Jehremy; Walters, Joseph; Buksch, Richard; Becker, Kevin G.; George, LynnFamilial dysautonomia (FD) results from mutation in IKBKAP/ELP1, a gene encoding the scaffolding protein for the Elongator complex. This highly conserved complex is required for the translation of codon-biased genes in lower organisms. Here we investigate whether Elongator serves a similar function in mammalian peripheral neurons, the population devastated in FD. Using codon-biased eGFP sensors, and multiplexing of codon usage with transcriptome and proteome analyses of over 6,000 genes, we identify two categories of genes, as well as specific gene identities that depend on Elongator for normal expression. Moreover, we show that multiple genes in the DNA damage repair pathway are codon-biased, and that with Elongator loss, their misregulation is correlated with elevated levels of DNA damage. These findings link Elongator's function in the translation of codon-biased genes with both the developmental and neurodegenerative phenotypes of FD, and also clarify the increased risk of cancer associated with the disease.Item A PAX5-OCT4-PRDM1 developmental switch specifies human primordial germ cells(2018-04) Fang, Fang; Angulo, Benjamin; Xia, Ninuo; Sukhwani, Meena; Wang, Zhengyuan; Carey, Charles C.; Mazurie, Aurélien J.; Cui, Jun; Wilkinson, Royce A.; Wiedenheft, Blake A.; Irie, Naoko; Surani, M. Azim; Orwig, Kyle E.; Reijo Pera, Renee A.Dysregulation of genetic pathways during human germ cell development leads to infertility. Here, we analysed bona fide human primordial germ cells (hPGCs) to probe the developmental genetics of human germ cell specification and differentiation. We examined the distribution of OCT4 occupancy in hPGCs relative to human embryonic stem cells (hESCs). We demonstrated that development, from pluripotent stem cells to germ cells, is driven by switching partners with OCT4 from SOX2 to PAX5 and PRDM1. Gain- and loss-of-function studies revealed that PAX5 encodes a critical regulator of hPGC development. Moreover, an epistasis analysis indicated that PAX5 acts upstream of OCT4 and PRDM1. The PAX5-OCT4-PRDM1 proteins form a core transcriptional network that activates germline and represses somatic programmes during human germ cell differentiation. These findings illustrate the power of combined genome editing, cell differentiation and engraftment for probing human developmental genetics that have historically been difficult to study.Item Dimerization of the voltage-sensing phosphatase controls its voltage-sensing and catalytic activity(2018-05) Rayaprolu, Vamseedhar; Royal, Perrine; Stengel, Karen; Sandoz, Guillaume; Kohout, Susy C.Multimerization is a key characteristic of most voltage-sensing proteins. The main exception was thought to be the Ciona intestinalis voltage-sensing phosphatase (Ci-VSP). In this study, we show that multimerization is also critical for Ci-VSP function. Using coimmunoprecipitation and single-molecule pull-down, we find that Ci-VSP stoichiometry is flexible. It exists as both monomers and dimers, with dimers favored at higher concentrations. We show strong dimerization via the voltage-sensing domain (VSD) and weak dimerization via the phosphatase domain. Using voltage-clamp fluorometry, we also find that VSDs cooperate to lower the voltage dependence of activation, thus favoring the activation of Ci-VSP. Finally, using activity assays, we find that dimerization alters Ci-VSP substrate specificity such that only dimeric Ci-VSP is able to dephosphorylate the 3-phosphate from PI(3,4,5)P3 or PI(3,4)P2 Our results indicate that dimerization plays a significant role in Ci-VSP function.
- «
- 1 (current)
- 2
- 3
- »