Mechanical & Industrial Engineering
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/33
The mission of the Mechanical & Industrial Engineering Department is to serve the State of Montana, the region, and the nation by providing outstanding leadership and contributions in knowledge discovery, student learning, innovation and entrepreneurship, and service to community and profession.
Browse
91 results
Search Results
Item A pilot study comparing prosthetic to sound limb gait mechanics during a turning task in people with transtibial amputation(Elsevier BV, 2023-10) Clemens, Sheila; Pew, CoreyBackground. Observational gait analysis is frequently used by clinicians to subjectively assess straight walking but is not often used to examine turning. Interlimb comparisons of phase- specific turning biomechanics in people with unilateral lower limb amputation has not previously been documented. Methods. A retrospective examination of gait kinematics and kinetics from five participants with unilateral transtibial amputation was performed. Data were collected during 90° step and spin turns capturing three distinct turning steps. Gait metrics of interest included: total turn time, stance time, peak knee flexion angle during Pre-Swing and Initial Swing gait phases, peak hip flexion and extension, ground reaction impulse, and whole body angular momentum. Statistical comparisons were made based on turn type between sound and prosthetic limbs. Findings. During the three turn steps (approach, apex, depart), participants spent significantly more time (P < 0.01) on their sound limb compared to their prosthetic limb regardless of turn type. Additionally, the prosthetic limb hip and knee exhibited more flexion (P < 0.05) during the apex step of turns, and whole body angular momentum was higher when the sound limb was used during the apex step of a turn (P < 0.05). Interpretation. This descriptive study offers the first phase-specific quantification of turning biomechanics in people with lower limb amputation. Results indicate that people with unilateral transtibial amputation spend more time on and experience higher impulses through their sound compared to their prosthetic limb during 90° turns, and that the prosthetic limb is performing differently than the sound limb, potentially increasing risks of injury or falls.Item Three Decades of Advancements in Osteoarthritis Research: Insights from Transcriptomic, Proteomic, and Metabolomic Studies(Elsevier BV, 2023-12) Farooq Rai, Muhammad; Collins, Kelsey H.; Lang, Annemarie; Maerz, Tristan; Geurts, Jeroen; Ruiz-Romero, Cristina; June, Ronald K.; Ramos, Yolande; Rice, Sarah J.; Ali, Shabana Amanda; Pastrello, Chiara; Jurisica, Igor; Appleton, C. Thomas; Rockel, Jason S.; Kapoor, MohitObjective. Osteoarthritis (OA) is a complex disease involving contributions from both local joint tissues and systemic sources. Patient characteristics, encompassing sociodemographic and clinical variables, are intricately linked with OA rendering its understanding challenging. Technological advancements have allowed for a comprehensive analysis of transcripts, proteomes and metabolomes in OA tissues/fluids through omic analyses. The objective of this review is to highlight the advancements achieved by omic studies in enhancing our understanding of OA pathogenesis over the last three decades. Design. We conducted an extensive literature search focusing on transcriptomics, proteomics and metabolomics within the context of OA. Specifically, we explore how these technologies have identified individual transcripts, proteins, and metabolites, as well as distinctive endotype signatures from various body tissues or fluids of OA patients, including insights at the single-cell level, to advance our understanding of this highly complex disease. Results. Omic studies reveal the description of numerous individual molecules and molecular patterns within OA-associated tissues and fluids. This includes the identification of specific cell (sub)types and associated pathways that contribute to disease mechanisms. However, there remains a necessity to further advance these technologies to delineate the spatial organization of cellular subtypes and molecular patterns within OA-afflicted tissues. Conclusions. Leveraging a multi-omics approach that integrates datasets from diverse molecular detection technologies, combined with patients’ clinical and sociodemographic features, and molecular and regulatory networks, holds promise for identifying unique patient endophenotypes. This holistic approach can illuminate the heterogeneity among OA patients and, in turn, facilitate the development of tailored therapeutic interventions.Item Nano Boron Oxide and Zinc Oxide Doped Lignin Containing Cellulose Nanocrystals Improve the Thermal, Mechanical and Flammability Properties of High-Density Poly(ethylene)(MDPI, 2023-12) Bajwa, Dilpreet S.; Holt, Greg; Stark, Nicole; Bajwa, Sreekala G.; Chanda, Saptaparni; Quadir, MohiuddinThe widely used high-density polyethylene (HDPE) polymer has inadequate mechanical and thermal properties for structural applications. To overcome this challenge, nano zinc oxide (ZnO) and nano boron oxide (B2O3) doped lignin-containing cellulose nanocrystals (L-CNC) were blended in the polymer matrix. The working hypothesis is that lignin will prevent CNC aggregation, and metal oxides will reduce the flammability of polymers by modifying their degradation pathways. This research prepared and incorporated safe, effective, and eco-friendly hybrid systems of nano ZnO/L-CNC and nano B2O3/L-CNC into the HDPE matrix to improve their physio-mechanical and fire-retardant properties. The composites were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, thermo-gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, horizontal burning test, and microcalorimetry test. The results demonstrated a substantial increase in mechanical properties and a reduction in flammability. The scanning electron microscope (SEM) images showed some agglomeration and irregular distribution of the inorganic oxides.Item Classroom aerosol dispersion modeling: experimental assessment of a low-cost flow simulation tool(Royal Society of Chemistry, 2023-01) Dacunto, P.; Nam, S.; Hirn, M.; Rodriguez, A.; Owkes, M.; Benson, M.The purpose of this study was to assess the utility of a low-cost flow simulation tool for an indoor air modeling application by comparing its outputs with the results of a physical experiment, as well as those from a more advanced computational fluid dynamics (CFD) software package. Five aerosol dispersion tests were performed in two different classrooms by releasing a CO2 tracer gas from six student locations. Resultant steady-state concentrations were monitored at 13 locations around the periphery of the room. Subsequently, the experiments were modeled using both a low-cost tool (SolidWorks Flow Simulation) and a more sophisticated tool (STAR-CCM+). Models were evaluated based on their ability to predict the experimentally measured concentrations at the 13 monitoring locations by calculating four performance parameters commonly used in the evaluation of dispersion models: fractional mean bias (FB), normalized mean-square error (NMSE), fraction of predicted value within a factor of two (FAC2), and normalized absolute difference (NAD). The more sophisticated model performed better in 15 of the 20 possible cases (five tests at four parameters each), with parameters meeting acceptance criteria in 19 of 20 cases. However, the lower-cost tool was only slightly worse, with parameters meeting acceptance criteria in 18 of 20 cases, and it performed better than the other tool in 3 of 20 cases. Because it provides useful results at a fraction of the monetary and training cost and is already widely accessible to many institutions, such a tool may be worthwhile for many indoor aerosol dispersion applications, especially for students or researchers just beginning CFD modeling.Item System efficiency of packed bed TES with radial flow vs. axial flow – Influence of aspect ratio(Elsevier BV, 2023-11) Skuntz, Matthew E.; Elander, Rachel; Azawii, Mohammad Al; Bueno, Pablo; Anderson, RyanThis paper compares the net system efficiency, including thermal efficiency and pressure drop effects, of radial versus axial flow packed beds for thermal energy storage. The traditional packed bed system is a cylindrical geometry where fluid flows axially from one end to another. However, issues of thermal stratification and high-pressure drop have led to recent studies on radial flow systems. One potential benefit is the reduced pressure drop in a radial flow system. This paper compares the performance of radial flow and axial flow systems at a range of aspect ratios (AR = H/Dbed) from 0.21 to 1.92 using a numerical model where the storage volume is held constant in all cases. When the radial flow bed is at a low aspect ratio (short/wide), the thermal front is improved but the pressure drop is high. At a high aspect ratio, the velocity is reduced in radial flow, leading to decreased pressure drop but an increased spreads in the thermal front that lowers thermal efficiency. The opposite trends are noted in axial flow. Thermal efficiencies of 83–91 % were noted for radial flow, while they ranged from 85 to 94 % in axial flow. Net efficiencies including pressure drop ranged from 74 to 82 % for radial flow and 80–87 % for axial flow. In both systems, a peak net efficiency was noted between the highest and lowest aspect ratio. While some aspect ratios with radial flow outperform axial flow from a net efficiency perspective, the results show that the highest net efficiency from axial flow is higher than that from radial flow. Overall, this paper highlights the importance of innovative TES designs and their potential to improve energy efficiency.Item Germ‐Free C57BL/6 Mice Have Increased Bone Mass and Altered Matrix Properties but Not Decreased Bone Fracture Resistance(Wiley, 2023-08) Vahidi, Ghazal; Moody, Maya; Welhave, Hope D.; Davidson, Leah; Rezaee, Taraneh; Behzad, Ramina; Karim, Lamya; Roggenbeck, Barbara A.; Walk, Seth T.; Martin, Stephen A.; June, Ronald K.; Heveran, Chelsea M.The gut microbiome impacts bone mass, which implies a disruption to bone homeostasis. However, it is not yet clear how the gut microbiome affects the regulation of bone mass and bone quality. We hypothesized that germ-free (GF) mice have increased bone mass and decreased bone toughness compared with conventionally housed mice. We tested this hypothesis using adult (20- to 21-week-old) C57BL/6J GF and conventionally raised female and male mice (n = 6–10/group). Trabecular microarchitecture and cortical geometry were measured from micro–CT of the femur distal metaphysis and cortical midshaft. Whole-femur strength and estimated material properties were measured using three-point bending and notched fracture toughness. Bone matrix properties were measured for the cortical femur by quantitative back-scattered electron imaging and nanoindentation, and, for the humerus, by Raman spectroscopy and fluorescent advanced glycation end product (fAGE) assay. Shifts in cortical tissue metabolism were measured from the contralateral humerus. GF mice had reduced bone resorption, increased trabecular bone microarchitecture, increased tissue strength and decreased whole-bone strength that was not explained by differences in bone size, increased tissue mineralization and fAGEs, and altered collagen structure that did not decrease fracture toughness. We observed several sex differences in GF mice, most notably for bone tissue metabolism. Male GF mice had a greater signature of amino acid metabolism, and female GF mice had a greater signature of lipid metabolism, exceeding the metabolic sex differences of the conventional mice. Together, these data demonstrate that the GF state in C57BL/6J mice alters bone mass and matrix properties but does not decrease bone fracture resistance. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).Item Biofilm.jl: A fast solver for one-dimensional biofilm chemistry and ecology(Elsevier BV, 2023-12) Owkes, Mark; Coblentz, Kai; Eriksson, Austen; Kammerzell, Takumi; Stewart, Philip S.Biofilms are communities of microorganisms that grow on virtually all surfaces with sufficient nutrients including aquatic and industrial water systems and medical devices. Biofilms are complex, structured communities where the interplay of growth, metabolism, and competition between species interact with physical processes of diffusion, convection, attachment, and detachment. This work describes a model of a one-dimensional biofilm in a stirred tank reactor that incorporates these complexities. The model is implemented in the modern Julia programming language providing an efficient tool for studying a large variety of biofilms and the intricate communities the microorganisms create. Details of the new software, known as Biofilm.jl, including the mathematical model and organization and execution of the code, are provided. Examples of biofilms modeled using Biofilm.jl are presented such as a single heterotroph, sulfide-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB), and a phototroph. Postprocessing tools are described that allow a Biofilm.jl user to make plots and extract specific values from the solution and explore the simulated biofilm results.Item High-fidelity simulations of a rotary bell atomizer with electrohydrodynamic effects(Elsevier BV, 2023-11) Krisshna, Venkata; Liu, Wanjiao; Owkes, MarkElectrostatic rotary bell atomizers are extensively used as paint applicators in the automobile industry. Paint undergoes atomization after exiting the edge of a high-speed rotating bell. In most setups, the paint is electrically charged and a background electric field is applied between the nozzle and the target surface to increase the transfer efficiency (TE). The atomization process directly determines the droplet size and droplet charge distributions which subsequently control TE and surface finish quality. Optimal spray parameters used in industry are often obtained from expensive trial-and-error methods. In this work, three-dimensional near-bell atomization is computationally simulated using a high-fidelity volume-of-fluid transport scheme that includes electrohydrodynamic (EHD) effects. We find that electrifying the setup results in the production of smaller droplets. Additionally, the electric field has a minor effect on primary atomization but a negligible effect on the size and stability of atomized droplets after secondary breakup. This cost-effective method of simulating EHD-assisted atomization allows for the understanding of the effect of the electric field and the extraction of droplet charge characteristics which is otherwise challenging to obtain experimentally.Item Validation of a Low-Cost Portable Device for Inducing Noninvasive Anterior Cruciate Ligament Injury in Mice(ASME International, 2023-08) Jbeily, Elias H.; Lin, Yu-Yang; Elmankabadi, Seif B.; Osipov, Benjamin; June, Ron K.; Christiansen, Blaine A.Noninvasive compression-induced anterior cruciate ligament rupture (ACL-R) is an easy and reproducible model for studying post-traumatic osteoarthritis (PTOA) in mice. However, equipment typically used for ACL-R is expensive, immobile, and not available to all researchers. In this study, we compared PTOA progression in mice injured with a low-cost custom ACL-rupture device (CARD) to mice injured with a standard system (ElectroForce 3200). We quantified anterior–posterior (AP) joint laxity immediately following injury, epiphyseal trabecular bone microstructure, and osteophyte volume at 2 and 6 weeks post injury using micro-computed tomography, and osteoarthritis progression and synovitis at 2 and 6 weeks post injury using whole-joint histology. We observed no significant differences in outcomes in mice injured with the CARD system compared to mice injured with the Electroforce (ELF) system. However, AP joint laxity data and week 2 micro-CT and histology outcomes suggested that injuries may have been slightly more severe and PTOA progressed slightly faster in mice injured with the CARD system compared to the ELF system. Altogether, these data confirm that ACL-R can be successfully and reproducibly performed with the CARD system and that osteoarthritis (OA) progression is mostly comparable to that of mice injured with the ELF system, though potentially slightly faster. The CARD system is low cost and portable, and we are making the plans and instructions freely available to all interested investigators in the hopes that they will find this system useful for their studies of OA in mice.Item Design of Experiment to Determine the Effect of the Geometric Variables on Tensile Properties of Carbon Fiber Reinforced Polymer Composites(MDPI AG, 2023-05) Janicki, Joseph C.; Egloff, Matthew C.; Bajwa, Dilpreet S.; Amendola, Roberta; Ryan, Cecily A.; Cairns, Douglas S.Carbon fiber reinforced polymers (CFRPs) are increasingly used in the aerospace industry because of their robust mechanical properties and strength to weight ratio. A significant drawback of CFRPs is their resistance to formability when drawing continuous CFRPs into complex shapes as it tends to bridge, resulting in various defects in the final product. However, CFRP made from Stretch Broken Carbon Fiber (SBCF) aims to solve this issue by demonstrating superior formability compared to conventional continuous CFRPs. To study and validate the performance of SBCF, a statistical design of the experiment was conducted using three different types of CFRPs in tow/tape form. Hexcel (Stamford, CT, USA) IM7-G continuous carbon fiber impregnated with Huntsman (The Woodlands, TX, USA) RDM 2019-053 resin system, Hexcel SBCF impregnated with RDM2019-053 resin, and Montana State University manufactured SBCF impregnated with Huntsman RDM 2019-053 resin were tested in a multitude of forming trials and the data were analyzed using a statistical model to evaluate the forming behavior of each fiber type. The results show that for continuous fiber CFRP tows forming, Fmax and Δmax do not show statistical significance based on temperature fluctuations; however, in SBCF CFRP tows forming, Fmax and Δmax is dominated by the temperature and geometry has a low statistical influence on the Fmax. The lower dependence on tool geometry at higher temperatures indicates possibly superior formability of MSU SBCF. Overall findings from this research help define practical testing methods to compare different CFRPs and provide a repeatable approach to creating a statistical model for measuring results from the formability trials.