Land Resources & Environmental Sciences
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/11
The Department of Land Resources and Environmental Sciences at Montana State Universityoffers integrative, multi-disciplinary, science-based degree programs at the B.S., M.S., and Ph.D. levels.
Browse
217 results
Search Results
Item Slicing and dicing Gallatin Valley soils: Pitfalls of litho-, pyro-, and climo-sequences(Montana State University, 2013-04) Sugden, JohnOutlined approach to defining elevational limits of aeolian inputs to soils across the Bridger Range (climosequence), effects of varying lithologies on soil properties (lithosequence), and effects of fire on soil properties associated with the August 2012 Millie Fire (pyrosequence).Item Effectiveness of "Bokashi" compost in breakdown of pre-consumer food waste(Towne's Harvest Garden, 2013-06) Appling, Talinna; DePartee, Max; Eddy, Zachary; Rychener, PaulOur student group tested the effectiveness of the Bokashi composting approach, comparing carbon dioxide emissions during a 1 month laboratory incubation and 6-week field incubation of pre-consumer food waste at Montana State University. Preliminary results are presented suggesting there is little difference in decomposition dynamics between pre-consumer food waste alone (control), food waste amended with Bokashi, and food waste amended with soil.Item Effects of Road Construction on Water Quality Parameters and Bull Trout (Salvelinus confluentus) Populations in Three Montana Water Bodies(Montana State University, 2019-03) Thatcher, Hannah Alicen; Scott PowellRoad construction adjacent to rivers and ensuing clearing of timber and shrubs can lead to alterations in the dynamics and morphology of channel features and water chemistry that provide habitats for aquatic biota. We examined associations between bull trout (Salvelinus confluentus) populations and water quality parameters related to road construction in three western Montana rivers over a 15-year study period. Bull trout have specific habitat requirements that can influence their overall abundance and distribution within a watershed, making them an important indicator species of general ecosystem health. We used average annual bull trout population data from Montana Fish, Wildlife, and Parks and daily water quality observations from the United States Geological Survey between 2000 and 2014 to analyze the correlation between the data sets. We used a nonparametric statistical test to determine whether any significant change was observed between the medians of pre- and post-construction water quality parameters and bull trout population numbers. The association between the water quality parameters and bull trout numbers was visually examined with scatter plots created in R where the Y-axis was population numbers and the X was the water quality parameter. The plots were then fit with a linear regression line and from this a visual interpretation of the association and strength of said associated was determined. The analysis yielded unexpected results with only some of the water quality parameters exhibiting a negative relationship with road construction disturbance. Two water bodies (Flathead River and Warm Springs Creek) showed no significant changes in bull trout population numbers, and the control water body with no road construction (the Blackfoot River) displayed significant differences between the pre- and post-construction water quality parameter medians. The parameters that did display expected outcomes (cadmium concentration in the Flathead River; water temperature, pH, and instantaneous discharge in Warm Springs Creek; and instantaneous discharge, pH, and cadmium concentration in the Blackfoot River) were not all strongly correlated with decreased bull trout population numbers. The water quality parameters common to all the study rivers that presented a negative association with bull trout numbers was pH. High levels of recreation and management activities on the Blackfoot River (the control) could explain these unexpected findings. The results do, however, partially corroborate previous studies on the negative association between bull trout population numbers and road construction-related disturbance. A longer study period combined with finer-grained data would be beneficial for future studies.Item Wildflower Seed Sales as Incentive for Adopting Flower Strips for Native Bee Conservation: A Cost-Benefit Analysis(2019-07) Delphia, Casey M.; O'Neill, Kevin M.; Burkle, Laura A.Improving pollinator habitat on farmlands is needed to further wild bee conservation and to sustain crop pollination in light of relationships between global declines in pollinators and reductions in floral resources. One management strategy gaining much attention is the use of wildflower strips planted alongside crops to provide supplemental floral resources for pollinators. However, farmer adoption of pollinator-friendly strategies has been minimal, likely due to uncertainty about costs and benefits of providing non-crop flowering plants for bees. Over 3 yr, on four diversified farms in Montana, United States, we estimated the potential economic profit of harvesting and selling wildflower seeds collected from flower strips implemented for wild bee conservation, as an incentive for farmers to adopt this management practice. We compared the potential profitability of selling small retail seed packets versus bulk wholesale seed. Our economic analyses indicated that potential revenue from retail seed sales exceeded the costs associated with establishing and maintaining wildflower strips after the second growing season. A wholesale approach, in contrast, resulted in considerable net economic losses. We provide proof-of-concept that, under retail scenarios, the sale of native wildflower seeds may provide an alternative economic benefit that, to our knowledge, remains unexplored. The retail seed-sales approach could encourage greater farmer adoption of wildflower strips as a pollinator-conservation strategy in agroecosystems. The approach could also fill a need for regionally produced, native wildflower seed for habitat restoration and landscaping aimed at conserving native plants and pollinators.Item Control of downy brome (Bromus tectorum) and Japanese brome (Bromus japonicus) using glyphosate and four graminicides: effects of herbicide rate, plant size, species, and accession(2019-11) Metier, Emily P.; Lehnhoff, Erik A.; Mangold, Jane; Rinella, Matthew J.; Rew, Lisa J.Nonnative annual brome invasion is a major problem in many ecosystems throughout the semiarid Intermountain West, decreasing production and biodiversity. Herbicides are the most widely used control technique but can have negative effects on co-occurring species. Graminicides, or grass-specific herbicides, may be able to control annual bromes without harming forbs and shrubs in restoration settings, but limited studies have addressed this potential. This study focused on evaluating the efficacy of glyphosate and four graminicides to control annual bromes, specifically downy brome and Japanese brome. In a greenhouse, glyphosate and four graminicides (clethodim, sethoxydim, fluazifop-P-butyl, and quizalofop-P-ethyl) were applied at two rates to downy brome plants of different heights (Experiment 1) and to three accessions of downy brome and Japanese brome of one height (Experiment 2). All herbicides reduced downy brome biomass, with most effective control on plants of less than 11 cm and with less than 12 leaves. Overall, quizalofop-P-ethyl and fluazifop-P-butyl treatments were most effective, and glyphosate and sethoxydim treatments least effective. Accessions demonstrated variable response to herbicides: the downy brome accession from the undisturbed site was more susceptible to herbicides than downy brome from the disturbed accession and Japanese brome accessions. These results demonstrate the potential for graminicides to target these annual bromes in ecosystems where they are growing intermixed with desired forbs and shrubs.Item Integrated Management of Cheatgrass (Bromus tectorum) with Sheep Grazing and Herbicide(2019-06) Lehnhoff, Erik A.; Rew, Lisa J.; Mangold, Jane M.; Seipel, Tim F.; Ragen, DevonCheatgrass (Bromus tectorum L.) is one of the most problematic weeds in western United States rangelands and sagebrush steppe. It responds positively to different forms of disturbance, and its management has proven difficult. Herbicide or targeted grazing alone often fail to provide adequate long-term control. Integrating both may afford better control by providing multiple stressors to the weed. We assessed herbicide application, targeted sheep grazing and integrated herbicide and grazing on B. tectorum and the plant community in rangeland in southwestern Montana from 2015 until 2017. Herbicide treatments included spring-applied (May 2015 and 2016) glyphosate, fall-applied (October 2015) glyphosate, imazapic and rimsulfuron, and spring-applied glyphosate plus fall-applied imazapic. Targeted grazing, consisting of four sheep/0.01 ha for a day in 5 m x 20 m plots (all vegetation removed to the ground surface), occurred twice (May 2015 and 2016). While no treatments reduced B. tectorum biomass or seed production, grazing integrated with fall-applied imazapic or rimsulfuron reduced B. tectorum cover from approximately 26% to 14% in 2016 and from 33% to 16% in 2017, compared to ungrazed control plots, and by an even greater amount compared to these herbicides applied without grazing. By 2017, all treatments except spring-applied glyphosate increased total plant cover (excludingItem Agro-economic returns were reduced for four years after conversion from perennial forage(2019-09) Miller, Perry R.; Bekkerman, Anton; Holmes, Jeffrey A.; Jones, Clain A.; Engel, Richard E.Perennial crops are increasingly converted to annual cropping systems as Conservation Reserve Program (CRP) contracts expire. We compared crop yields and net returns across 2013–2018 for no‐till pulse crop‐wheat (Triticum aestivum L.) (P‐W) systems, preceded either by 10 yr of P‐W or 10 yr of perennial cropping (P‐WPer) at Bozeman, MT. The perennial mixed species planting, dominated by alfalfa (Medicago sativa L.), was split into unharvested and annually harvested treatments 2005–2012. The 2013–2018 experimental design included both systems replicated as main plots, with 50 and 100% recommended available N rates as subplots. Precipitation was below average during three of the first four growing seasons, followed by two wetter than average years. The P‐WPer system had generally lower soil moisture and equal or greater nitrogen supply than the P‐W. ‘Haying off’ (reduced harvest index) occurred in wheat grown 2 and 4 yr after conversion from perennial to annual cropping, which reduced grain yield, and increased grain protein. Crop yield losses in the P‐WPer system averaged 0.84 Mg ha–1 (28%) over 4 yr and two N rates. After adjusting grain prices using historical discounts and premiums for test weight and protein content at Montana grain elevators, P‐WPer net returns were reduced for four consecutive years in three economic scenarios, and for 2 yr in a fourth scenario by a 4‐yr cumulative average of (USD) $731 ha–1 (45%). We conclude annual crop yield and economic returns were compromised for 4 yr following 10 yr of an alfalfa‐dominated perennial cropping system.Item Effects of sucrose supplementation and generation on life-history traits of Bracon cephi and Bracon lissogaster, parasitoids of the wheat stem sawfly(2019-12) Reis, Dayane A.; Hofland, Megan L.; Peterson, Robert K. D.; Weaver, David K.Knowledge of the life‐history traits that influence the reproductive success of parasitoids could provide useful information to enhance their effectiveness as biological control agents. The wheat stem sawfly Cephus cinctus Norton (Hymenoptera: Cephidae) is a major pest of wheat in the Northern Great Plains of North America. The bivoltine, sympatric and specialist parasitoids Bracon cephi (Gahan) and Bracon lissogaster Muesebeck (Hymenoptera: Braconidae) are the only species known to attack C. cinctus in wheat. In the present study, we quantify the body size, longevity, egg load and egg volume of B. cephi and B. lissogaster aiming to test whether these life‐history traits differ among adult females developing from overwintering and summer generation larvae. We also investigate the effect of sucrose supplementation on the same reproductive parameters. The results obtained show no differences between life‐history traits of B. cephi developing from the overwintering and summer generations. By contrast, the egg load of B. lissogaster is significantly different between generations, with overwintered females producing 1.2‐fold more eggs than summer individuals. Sucrose feeding has a strong positive effect on life‐history traits of both parasitoid species and generations. The longevity of sucrose‐fed females of B. cephi is increased three‐fold, whereas the survival of B. lissogaster is increased almost nine‐fold. Females of B. cephi treated with sucrose have four‐fold more mature eggs, whereas the egg load of B. lissogaster is increased 1.15‐ to 1.25‐fold with sugar feeding. Only B. cephi females increase egg volume with sucrose. The present study provides valuable insights on the life‐history and nutritional requirements of these two important parasitoid species.Item Field demonstration of a semiochemical treatment that enhances Diorhabda carinulata biological control of Tamarix spp.(2019-09) Gaffke, Alexander M.; Sing, Sharlene E.; Dudley, Tom L.; Bean, Daniel W.; Russak, Justin A.; Mafra-Neto, Agenor; Peterson, Robert K. D.; Weaver, David K.The northern tamarisk beetle Diorhabda carinulata (Desbrochers) was approved for release in the United States for classical biological control of a complex of invasive saltcedar species and their hybrids (Tamarix spp.). An aggregation pheromone used by D. carinulata to locate conspecifics is fundamental to colonization and reproductive success. A specialized matrix formulated for controlled release of this aggregation pheromone was developed as a lure to manipulate adult densities in the field. One application of the lure at onset of adult emergence for each generation provided long term attraction and retention of D. carinulata adults on treated Tamarix spp. plants. Treated plants exhibited greater levels of defoliation, dieback and canopy reduction. Application of a single, well-timed aggregation pheromone treatment per generation increased the efficacy of this classical weed biological control agent.Item Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange(2019-10-19) Fu, Zheng; Stoy, Paul C.; Poulter, Benjamin; Gerken, Tobias; Zhang, Zhen; Wakbulcho, Guta; Niu, ShuliTerrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2) concentrations, but processes driving the IAV of net ecosystem CO2 exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated with ecological processes that determine the IAV of NEE. Here, we decompose the annual NEE of global terrestrial ecosystems into their phenological and physiological components, namely maximum carbon uptake (MCU) and release (MCR), the carbon uptake period (CUP), and two parameters, α and β, that describe the ratio between actual versus hypothetical maximum C sink and source, respectively. Using long‐term observed NEE from 66 eddy covariance sites and global products derived from FLUXNET observations, we found that the IAV of NEE is determined predominately by MCU at the global scale, which explains 48% of the IAV of NEE on average while α, CUP, β, and MCR explain 14%, 25%, 2%, and 8%, respectively. These patterns differ in water‐limited ecosystems versus temperature‐ and radiation‐limited ecosystems; 31% of the IAV of NEE is determined by the IAV of CUP in water‐limited ecosystems, and 60% of the IAV of NEE is determined by the IAV of MCU in temperature‐ and radiation‐limited ecosystems. The Lund‐Potsdam‐Jena (LPJ) model and the Multi‐scale Synthesis and Terrestrial Model Inter‐comparison Project (MsTMIP) models underestimate the contribution of MCU to the IAV of NEE by about 18% on average, and overestimate the contribution of CUP by about 25%. This study provides a new perspective on the proximate causes of the IAV of NEE, which suggest that capturing the variability of MCU is critical for modeling the IAV of NEE across most of the global land surface.