Land Resources & Environmental Sciences
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/11
The Department of Land Resources and Environmental Sciences at Montana State Universityoffers integrative, multi-disciplinary, science-based degree programs at the B.S., M.S., and Ph.D. levels.
Browse
5 results
Search Results
Item Uranium Isotopes and Dissolved Organic Carbon in Loess Permafrost: Modeling the Age of Ancient Ice(2015-03) Ewing, Stephanie A.; Paces, J. B.; O'Donnell, Jonathan A.; Jorgenson, M. T.; Kanevskiy, Mikhail Z.; Aiken, George R.; Shur, Y.; Harden, J. W.; Striegl, R.The residence time of ice in permafrost is an indicator of past climate history, and of the resilience and vulnerability of high-latitude ecosystems to global change. Development of geochemical indicators of ground-ice residence times in permafrost will advance understanding of the circumstances and evidence of permafrost formation, preservation, and thaw in response to climate warming and other disturbance. We used uranium isotopes to evaluate the residence time of segregated ground ice from ice-rich loess permafrost cores in central Alaska. Activity ratios of 234U vs. 238U (234U/238U) in water from thawed core sections ranged between 1.163 and 1.904 due to contact of ice and associated liquid water with mineral surfaces over time. Measured (234U/238U) values in ground ice showed an overall increase with depth in a series of five neighboring cores up to 21 m deep. This is consistent with increasing residence time of ice with depth as a result of accumulation of loess over time, as well as characteristic ice morphologies, high segregated ice content, and wedge ice, all of which support an interpretation of syngenetic permafrost formation associated with loess deposition. At the same time, stratigraphic evidence indicates some past sediment redistribution and possibly shallow thaw among cores, with local mixing of aged thaw waters. Using measures of surface area and a leaching experiment to determine U distribution, a geometric model of (234U/238U) evolution suggests mean ages of up to ∼200 ky BP in the deepest core, with estimated uncertainties of up to an order of magnitude. Evidence of secondary coatings on loess grains with elevated (234U/238U) values and U concentrations suggests that refinement of the geometric model to account for weathering processes is needed to reduce uncertainty. We suggest that in this area of deep ice-rich loess permafrost, ice bodies have been preserved from the last glacial period (10–100 ky BP), despite subsequent fluctuations in climate, fire disturbance and vegetation. Radiocarbon (14C) analysis of dissolved organic carbon (DOC) in thaw waters supports ages greater than ∼40 ky BP below 10 m. DOC concentrations in thaw waters increased with depth to maxima of >1000 ppm, despite little change in ice content or cryostructures. These relations suggest time-dependent production of old DOC that will be released upon permafrost thaw at a rate that is mediated by sediment transport, among other factors.Item Polar and alpine microbiology in a changing world(2014-08) Priscu, John C.; Laybourn-Parry, Johanna; Häggblom, MaxHigh altitude and high latitude regions on Earth are experiencing rapid changes in climate. Ecological impacts resulting from these changes are now being observed at all ecosystem levels and larger deviations and more significant impacts are anticipated in the future. Satellite data show dramatic reductions in the extent and thickness of sea ice at both poles, and rising temperatures are causing alpine glaciers worldwide to shrink in area and volume. By virtue of their relatively rapid growth rates and metabolic diversity, we can expect microorganisms to be the first responders to fluctuating climatic conditions. Because microorganisms are keystone players in elemental transformations, variations in their abundance and diversity will initiate a cascade of impacts throughout entire ecosystems. Clearly, knowledge of the distribution, biodiversity and functional roles of microorganisms inhabiting polar and alpine environments is essential to our under-standing of ecosystem processes in a changing climate.Item Impact of growing conditions on the competitive ability of Camelina sativa (L.) Crantz (Camelina)(2013-03) Davis, Phillip B.; Maxwell, Bruce D.; Menalled, Fabian D.It has been claimed that Camelina sativa, a recently introduced crop in the northern Great Plains, is a highly competitive species. However, this issue has not been formally tested. Utilizing replacement series diagrams, we assessed the importance of growing conditions in the competitive ability of C. sativa. Results indicated that canola and Bromus tectorum were superior competitors in both loam and sandy soils, thus providing evidence that C. sativa may not be as competitive as previously indicated.Item Impact of Biotic and Abiotic Stresses on the Competitive Ability of Multiple Herbicide Resistant Wild Oat (Avena fatua)(2013-05) Lehnhoff, Erik A.; Keith, Barbara K.; Dyer, William E.; Menalled, Fabian D.Ecological theory predicts that fitness costs of herbicide resistance should lead to the reduced relative abundance of resistant populations upon the cessation of herbicide use. This greenhouse research investigated the potential fitness costs of two multiple herbicide resistant (MHR) wild oat (Avena fatua) populations, an economically important weed that affects cereal and pulse crop production in the Northern Great Plains of North America. We compared the competitive ability of two MHR and two herbicide susceptible (HS) A. fatua populations along a gradient of biotic and abiotic stresses The biotic stress was imposed by three levels of wheat (Triticum aestivum) competition (0, 4, and 8 individuals pot−1) and an abiotic stress by three nitrogen (N) fertilization rates (0, 50 and 100 kg N ha−1). Data were analyzed with linear mixed-effects models and results showed that the biomass of all A. fatua populations decreased with increasing T. aestivum competition at all N rates. Similarly, A. fatua relative growth rate (RGR) decreased with increasing T. aestivum competition at the medium and high N rates but there was no response with 0 N. There were no differences between the levels of biomass or RGR of HS and MHR populations in response to T. aestivum competition. Overall, the results indicate that MHR does not confer growth-related fitness costs in these A. fatua populations, and that their relative abundance will not be diminished with respect to HS populations in the absence of herbicide treatment.Item Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light(American Association for the Advancement of Science, 2014-08) Gan, Fei; Zhang, Shuyi; Rockwell, Nathan C.; Martin, Shelley; Langarias, J. Clark; Bryant, Donald A.; Gan, Fei; Zhang, Shuyi; Rockwell, Nathan C.; Martin, Shelley; Langarias, J. Clark; Bryant, Donald A.Cyanobacteria are unique among bacteria in performing oxygenic photosynthesis, often together with nitrogen fixation and, thus, are major primary producers in many ecosystems. The cyanobacterium, Leptolyngbya sp. strain JSC-1, exhibits an extensive photoacclimative response to growth in far-red light that includes the synthesis of chlorophylls d and f. During far-red acclimation, transcript levels increase ≥2-fold for ~900 genes and decrease ≥2-fold for ~2000 genes. Core subunits of photosystem I, photosystem II, and phycobilisomes are replaced by proteins encoded in a 21-gene cluster that includes a knotless red/far-red phytochrome and two response regulators. This acclimative response enhances light harvesting for wavelengths complementary to the growth light (λ = 700 to 750 nm) and enhances oxygen evolution in far-red light.