Chemistry & Biochemistry
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/42
The Department of Chemistry and Biochemistry offers research-oriented programs culminating in the Doctor of Philosophy degree. The faculty in the department have expertise over a broad range of specialty areas including synthesis, structure, spectroscopy, and mechanism. In each of these fields, the strength of the department has been recognized at the international level.
Browse
4 results
Search Results
Item Methyl-reducing methanogenesis by a thermophilic culture of Korarchaeia(Springer Science and Business Media LLC, 2024-07) Krukenberg, Viola; Kohtz, Anthony J.; Jay, Zackary J.; Hatzenpichler, RolandMethanogenesis mediated by archaea is the main source of methane, a strong greenhouse gas, and thus is critical for understanding Earth’s climate dynamics. Recently, genes encoding diverse methanogenesis pathways have been discovered in metagenome-assembled genomes affiliated with several archaeal phyla1,2,3,4,5,6,7. However, all experimental studies on methanogens are at present restricted to cultured representatives of the Euryarchaeota. Here we show methanogenic growth by a member of the lineage Korarchaeia within the phylum Thermoproteota (TACK superphylum)5,6,7. Following enrichment cultivation of ‘Candidatus Methanodesulfokora washburnenis’ strain LCB3, we used measurements of metabolic activity and isotope tracer conversion to demonstrate methanol reduction to methane using hydrogen as an electron donor. Analysis of the archaeon’s circular genome and transcriptome revealed unique modifications in the energy conservation pathways linked to methanogenesis, including enzyme complexes involved in hydrogen and sulfur metabolism. The cultivation and characterization of this new group of archaea is critical for a deeper evaluation of the diversity, physiology and biochemistry of methanogens.Item Cultivation and visualization of a methanogen of the phylum Thermoproteota(Springer Science and Business Media LLC, 2024-07) Kohtz, Anthony J.; Petrosian, Nikolai; Krukenberg, Viola; Jay, Zackary J.; Pihofer, Martin; Hatzenpichler, RolandMethane is the second most abundant climate-active gas, and understanding its sources and sinks is an important endeavour in microbiology, biogeochemistry, and climate sciences1,2. For decades, it was thought that methanogenesis, the ability to conserve energy coupled to methane production, was taxonomically restricted to a metabolically specialized group of archaea, the Euryarchaeota1. The discovery of marker genes for anaerobic alkane cycling in metagenome-assembled genomes obtained from diverse habitats has led to the hypothesis that archaeal lineages outside the Euryarchaeota are also involved in methanogenesis3,4,5,6. Here we cultured Candidatus Methanosuratincola verstraetei strain LCB70, a member of the archaeal class Methanomethylicia (formerly Verstraetearchaeota) within the phylum Thermoproteota, from a terrestrial hot spring. Growth experiments combined with activity assays, stable isotope tracing, and genomic and transcriptomic analyses demonstrated that this thermophilic archaeon grows by means of methyl-reducing hydrogenotrophic methanogenesis. Cryo-electron tomography revealed that Ca. M. verstraetei are coccoid cells with archaella and chemoreceptor arrays, and that they can form intercellular bridges connecting two to three cells with continuous cytoplasm and S-layer. The wide environmental distribution of Ca. M. verstraetei suggests that they might play important and hitherto overlooked roles in carbon cycling within diverse anoxic habitats.Item MicrobioRaman: an open-access web repository for microbiological Raman spectroscopy data(Springer Science and Business Media LLC, 2024-05) Lee, Kang Soo et al.; Hatzenpichler, RolandHere we present the establishment of an open-access web-based repository for microbiological Raman spectroscopy data. The data collection, called ‘MicrobioRaman’ (https://www.ebi.ac.uk/biostudies/MicrobioRaman/studies), was inspired by the great success and usefulness of research databases such as GenBank and UniProt. This centralized repository, residing within the BioStudies database1 — which is maintained by a public institution, the European Bioinformatics Institute — minimizes the risk of data loss or eventual abandonment, offering a long-term common reference for analysis with advantages in accessibility and transparency over commercial data analysis tools. We feel that MicrobioRaman will provide a foundation for this growing field by serving as an open-access repository for sharing microbiological Raman data and through the codification of a set of reporting standards.Item Methylotrophic methanogenesis in the Archaeoglobi revealed by cultivation of Ca. Methanoglobus hypatiae from a Yellowstone hot spring(Oxford University Press, 2024-03) Lynes, Mackenzie M.; Jay, Zackary J.; Kohtz, Anthony J.; Hatzenpichler, RolandOver the past decade, environmental metagenomics and polymerase chain reaction-based marker gene surveys have revealed that several lineages beyond just a few well-established groups within the Euryarchaeota superphylum harbor the genetic potential for methanogenesis. One of these groups are the Archaeoglobi, a class of thermophilic Euryarchaeota that have long been considered to live non-methanogenic lifestyles. Here, we enriched Candidatus Methanoglobus hypatiae, a methanogen affiliated with the family Archaeoglobaceae, from a hot spring in Yellowstone National Park. The enrichment is sediment-free, grows at 64–70°C and a pH of 7.8, and produces methane from mono-, di-, and tri-methylamine. Ca. M. hypatiae is represented by a 1.62 Mb metagenome-assembled genome with an estimated completeness of 100% and accounts for up to 67% of cells in the culture according to fluorescence in situ hybridization. Via genome-resolved metatranscriptomics and stable isotope tracing, we demonstrate that Ca. M. hypatiae expresses methylotrophic methanogenesis and energy-conserving pathways for reducing monomethylamine to methane. The detection of Archaeoglobi populations related to Ca. M. hypatiae in 36 geochemically diverse geothermal sites within Yellowstone National Park, as revealed through the examination of previously published gene amplicon datasets, implies a previously underestimated contribution to anaerobic carbon cycling in extreme ecosystems.