Chemistry & Biochemistry
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/42
The Department of Chemistry and Biochemistry offers research-oriented programs culminating in the Doctor of Philosophy degree. The faculty in the department have expertise over a broad range of specialty areas including synthesis, structure, spectroscopy, and mechanism. In each of these fields, the strength of the department has been recognized at the international level.
Browse
15 results
Search Results
Item Hydrogen Adsorption in Ultramicroporous Metal–Organic Frameworks Featuring Silent Open Metal Sites(American Chemical Society, 2023-11) Chiu, Nan Chieh; Compton, Dalton; Gładysiak, Andrzej; Simrod, Scott; Khivantsev, Konstantin; Woo, Tom K.; Stadie, Nicholas P.; Stylianou, Kyriakos C.In this study, we utilized an ultramicroporous metal–organic framework (MOF) named [Ni3(pzdc)2(ade)2(H2O)4]·2.18H2O (where H3pzdc represents pyrazole-3,5-dicarboxylic acid and ade represents adenine) for hydrogen (H2) adsorption. Upon activation, [Ni3(pzdc)2(ade)2] was obtained, and in situ carbon monoxide loading by transmission infrared spectroscopy revealed the generation of open Ni(II) sites. The MOF displayed a Brunauer–Emmett–Teller (BET) surface area of 160 m2/g and a pore size of 0.67 nm. Hydrogen adsorption measurements conducted on this MOF at 77 K showed a steep increase in uptake (up to 1.93 mmol/g at 0.04 bar) at low pressure, reaching a H2 uptake saturation at 2.11 mmol/g at ∼0.15 bar. The affinity of this MOF for H2 was determined to be 9.7 ± 1.0 kJ/mol. In situ H2 loading experiments supported by molecular simulations confirmed that H2 does not bind to the open Ni(II) sites of [Ni3(pzdc)2(ade)2], and the high affinity of the MOF for H2 is attributed to the interplay of pore size, shape, and functionality.Item Prominent Structural Dependence of Quantum Capacitance Unraveled by Nitrogen‐Doped Graphene Mesosponge(Wiley, 2023-12) Tang, Rui; Aziz, Alex; Yu, Wei; Pan, Zheng‐Ze; Nishikawa, Ginga; Yoshii, Takeharu; Nomura, Keita; Taylor, Erin E.; Stadie, Nicholas P.; Inoue, Kazutoshi; Kotani, Motoko; Kyotani, Takashi; Nishihara, HirotomoPorous carbons are important electrode materials for supercapacitors. One of the challenges associated with supercapacitors is improving their energy density without relying on pseudocapacitance, which is based on fast redox reactions that often shorten device lifetimes. A possible solution involves achieving high total capacitance (Ctot), which comprises Helmholtz capacitance (CH) and possibly quantum capacitance (CQ), in high-surface carbon materials comprising minimally stacked graphene walls. In this work, a templating method is used to synthesize 3D mesoporous graphenes with largely identical pore structures (≈2100 m2 g−1 with an average pore size of ≈7 nm) but different concentrations of oxygen-containing functional groups (0.3–6.7 wt.%) and nitrogen dopants (0.1–4.5 wt.%). Thus, the impact of the heteroatom functionalities on Ctot is systematically investigated in an organic electrolyte excluding the effect of pore structures. It is found that heteroatom functionalities determine Ctot, resulting in the cyclic voltammetry curves being rectangular or butterfly-shaped. The nitrogen functionalities are found to significantly enhance Ctot owing to increased CQ.Item Hydrogen-Type Binding Sites in Carbonaceous Electrodes for Rapid Lithium Insertion(American Chemical Society, 2023-08) McGlamery, Devin; McDaniel, Charles; Xu, Wei; Stadie, Nicholas P.Direct pyrolysis of coronene at 800 °C produces low-surface-area, nanocrystalline graphitic carbon containing a uniquely high content of a class of lithium binding sites referred to herein as “hydrogen-type” sites. Correspondingly, this material exhibits a distinct redox couple under electrochemical lithiation that is characterized as intermediate-strength, capacitive lithium binding, centered at ∼0.5 V vs Li/Li+. Lithiation of hydrogen-type sites is reversible and electrochemically distinct from capacitive lithium adsorption and from intercalation-type binding between graphitic layers. Hydrogen-type site lithiation can be fully retained even up to ultrafast current rates (e.g., 15 A g–1, ∼40 C) where intercalation is severely hampered by ion desolvation kinetics; at the same time, the bulk nature of these sites does not require a large surface area, and only minimal electrolyte decomposition occurs during the first charge/discharge cycle, making coronene-derived carbon an exceptional candidate for high-energy-density battery applications.Item Stabilizing Effects of Phosphorus-Doped Silicon Nanoparticle Anodes in Lithium-Ion Batteries(ACS Publications, 2023-01) Gordon, Isabelle P.; Xu, Wei; Randak, Sophia; Jow, T. Richard; Stadie, Nicholas P.Phosphorus-doped silicon has been reported to exhibit improved cycling stability and/or higher capacity retention than pure silicon as the anode in lithium-ion batteries. However, crystallite size and particle morphology are difficult to decouple from compositional tuning during chemical modification. In this work, we explore direct solid-state routes to phosphorus doping of silicon powders relevant to electrochemical applications. A wide range of compositions are assessed, from 0.05 to 3.0 at % P, as well as a wide range of silicon starting materials of varying crystallinity, particle size, and particle morphology. Successful incorporation of phosphorus into the silicon lattice is best confirmed by X-ray diffraction; the Si(111) reflection shifts to higher angles as consistent with the known lattice contraction of 0.002 Å per 1 at % phosphorus. The addition of phosphorus to Si nanoparticles (100–500 nm) in the high doping regime causes grain coarsening and catalyzes an increase in crystallinity. On the other hand, dilute doping of phosphorus can be carried out without great alteration of the nanoparticulate morphology. The opposite effect occurs for very large microparticles (>10 μm), whereby the doping is concomitant with a disruption of the crystal lattice and reduction of the crystallite size. These effects are borne out in both the electrochemical stability over long-term cycling in a lithium-ion half-cell as well as in the thermal stability under high-temperature decomposition. By comparison across a wide range of pure and P-doped materials of varying particle and crystallite sizes, the independent effects of doping and structure on thermal and electrochemical stability are able to be decoupled herein. A stabilizing effect is most significant when phosphorus doping is dilute and heterogeneous (surface-enriched) within the silicon nanoparticles.Item Does boron or nitrogen substitution affect hydrogen physisorption on open carbon surfaces?(Royal Society of Chemistry, 2022-01) Rowsey, Rylan; Taylor, Erin E.; Hinson, Ryan W.; Compton, Dalton; Stadie, Nicholas P.; SzilagyiIncorporation of heteroatoms in carbon materials is commonly expected to influence their physical or chemical properties. However, contrary to previous results for methane adsorption, no technologically significant effect was identified for the hydrogen physisorption energies (measured 4.1–4.6 kJ mol−1 and calculated qst = −ΔHads = 4.1 ± 0.7 kJ mol−1 using a comprehensive set of levels of theory) as a function of B- and N-substitution of a mid-plane C-site on open carbon surfaces.Item Methodological Studies of the Mechanism of Anion Insertion in Nanometer‐Sized Carbon Micropores(Wiley, 2022-11) Welty, Connor; Taylor, Erin E.; Posey, Sadie; Vailati, Patric; Kravchyk, Kostiantyn V.; Kovalenko, Maksym V.; Stadie, Nicholas P.Dual-ion hybrid capacitors (DIHCs) are a promising class of electrochemical energy storage devices intermediate between batteries and supercapacitors, exhibiting both high energy and power density, and generalizable across wide chemistries beyond lithium. In this study, a model carbon framework material with a periodic structure containing exclusively 1.2 nm width pores, zeolite-templated carbon (ZTC), was investigated as the positive electrode for the storage of a range of anions relevant to DIHC chemistries. Screening experiments were carried out across 21 electrolyte compositions within a common stable potential window of 3.0–4.0 V vs. Li/Li+ to determine trends in capacity as a function of anion and solvent properties. To achieve fast rate capability, a binary solvent balancing a high dielectric constant with a low viscosity and small molecular size was used; optimized full-cells based on LiPF6 in binary electrolyte exhibited 146 Wh kg−1 and >4000 W kg−1 energy and power densities, respectively.Item Exploring the Limits of the Rapid-Charging Performance of Graphite as the Anode in Lithium-Ion Batteries(The Electrochemical Society, 2022-01) Xu, Wei; Welty, Connor; Peterson, Margaret R.; Read, Jeffrey A.; Stadie, Nicholas P.Graphite is, in principle, applicable as a high-power anode in lithium-ion batteries (LIBs) given its high intralayer lithium diffusivity at room temperature. However, such cells are known to exhibit poor capacity retention and/or undergo irreversible side reactions including lithium plating when charged at current rates above ∼2 C (∼740 mA g−1). To explore the inherent materials properties that limit graphite anodes in rapid-charge applications, a series of full-cells consisting of graphite as the anode and a standard Li[Ni0.8Mn0.1Co0.1]O2 (NMC811) cathode was investigated. Instead of a conventional cathode-limited cell design, an anode-limited approach was used in this work to ensure that the overall cell capacity is only determined by the graphite electrode of interest. The optimized N:P capacity ratio was determined as N/P = 0.67, enabling stable cycling across a wide range of charging rates (4–20 C) without inhibition by the NMC811 cathode. The results show that unmodified, highly crystalline graphite can be an excellent anode for rapid-charge applications at up to 8 C, even with a standard electrolyte and NMC811 cathode and in cells with 1.0 mAh cm−2 loadings. As a rule, capacity and specific energy are inversely proportional to crystallite size at high rates; performance can likely be improved by electrolyte/cathode tuning.Item Neutron Insights into Sorption Enhanced Methanol Catalysis(Springer Science and Business Media LLC, 2021-06) Nikolic, Marin; Daemen, Luke; Ramirez-Cuesta, Anibal J.; Balderas Xicohtencatl, Rafael; Cheng, Yongqiang; Putnam, Seth T.; Stadie, Nicholas P.; Liu, Xiaochun; Terreni, Jasmin; Borgschulte, AndreasSorption enhanced methanol production makes use of the equilibrium shift of the CO2 hydrogenation reaction towards the desired products. However, the increased complexity of the catalyst system leads to additional reactions and thus side products such as dimethyl ether, and complicates the analysis of the reaction mechanism. On the other hand, the unusually high concentration of intermediates and products in the sorbent facilitates the use of inelastic neutron scattering (INS) spectroscopy. Despite being a post-mortem method, the INS data revealed the change of the reaction path during sorption catalysis. Concretely, the experiments indicate that the varying water partial pressure due to the adsorption saturation of the zeolite sorbent influences the progress of the reaction steps in which water is involved. Experiments with model catalysts support the INS findings.Item Methane Adsorption on Heteroatom-Modified Maquettes of Porous Carbon Surfaces(American Chemical Society, 2021-07) Rowsey, Rylan; Taylor, Erin E.; Irle, Stephan; Stadie, Nicholas P.; Szilagyi, Robert K.Experimental and theoretical studies disagree on the energetics of methane adsorption on carbon materials. However, this information is critical for the rational design and optimization of the structure and composition of adsorbents for natural gas storage. The delicate nature of dispersion interactions, polarization of both the adsorbent and the adsorbate, interplay between H-bonding and tetrel bonding, and induced dipole/Coulomb interactions inherent to methane physisorption require computational treatment at the highest possible level of theory. In this study, we employed the smallest reasonable computational model, a maquette of porous carbon surfaces with a central site for substitution and methane binding. The most accurate predictions of methane adsorption energetics were achieved by electron-correlated molecular orbital theory CCSD(T) and hybrid density functional theory MN15 calculations employing a saturated, all-electron basis set. The characteristic geometry of methane adsorption on a carbon surface (“lander approach”) arises due to bonding interactions of the adsorbent π-system with the proximal H–C bonds of methane, in addition to tetrel bonding between the antibonding orbital of the distal C–H bond and the central atom of the maquette (C, B, or N). The polarization of the electron density, structural deformations, and the comprehensive energetic analysis clearly indicate a ∼3 kJ mol–1 preference for methane binding on the N-substituted maquette. The B-substituted maquette showed a comparable or lower binding energy than the unsubstituted, pure C model, depending on the level of theory employed. The calculated thermodynamic results indicate a strategy for incorporating electron-enriched substitutions (e.g., N) into carbon materials as a way to increase methane storage capacity over electron-deficient (e.g., B) modifications. The thermochemical analysis was revised for establishing a conceptual agreement between the experimental isosteric heat of adsorption and the binding enthalpies from statistical thermodynamics principles.Item What Structural Features Make Porous Carbons Work for Redox-Enhanced Electrochemical Capacitors? A Fundamental Investigation(American Chemical Society, 2021-02) Zhao, Yang; Taylor, Erin E.; Hu, Xudong; Evanko, Brian; Zeng, Xiaojun; Wang, Hengbin; Ohnishi, Ryohji; Tsukazaki, Takaki; Li, Jian-Feng; Stadie, Nicholas P.; Yoo, Seung Joon; Stucky, Galen D.; Boettcher, Shannon W.The addition of redox-active molecules into electrochemical-capacitor electrolytes provides increased specific energy density. Here we illustrate the underlying operational mechanisms and design principles for carbons with hierarchical pore sizes in the micropore (0.6–2 nm) to mesopore (2–3 nm, 5–30 nm) range as electrode materials in redox-enhanced electrochemical capacitors. When using iodide as a model redox additive, we discover that the redox capacity is correlated to the pore volume of the carbon electrodes when void space is included. The fastest rates are typically observed with pore-sizes >1 nm, while slow self-discharge requires pores <1 nm. When used without an ion-selective-membrane separator, the delivered capacity correlated with the quantity of redox species held within the carbon. A commercial microporous carbon, MSC30, with substantial hierarchy in pore size, including small <0.8 nm pores and larger 1.1–3 nm pores, showed the best overall performance, illustrating key design principles.