Chemistry & Biochemistry

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/42

The Department of Chemistry and Biochemistry offers research-oriented programs culminating in the Doctor of Philosophy degree. The faculty in the department have expertise over a broad range of specialty areas including synthesis, structure, spectroscopy, and mechanism. In each of these fields, the strength of the department has been recognized at the international level.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Metalloproteomics Reveals Multi-Level Stress Response in Escherichia coli When Exposed to Arsenite
    (MDPI AG, 2024-09) Larson, James; Sather, Brett; Wang, Lu; Westrum, Jade; Tokmina-Lukaszewska, Monika; Pauley, Jordan; Copié, Valérie; McDermott, Timothy R.; Bothner, Brian
    The arsRBC operon encodes a three-protein arsenic resistance system. ArsR regulates the transcription of the operon, while ArsB and ArsC are involved in exporting trivalent arsenic and reducing pentavalent arsenic, respectively. Previous research into Agrobacterium tumefaciens 5A has demonstrated that ArsR has regulatory control over a wide range of metal-related proteins and metabolic pathways. We hypothesized that ArsR has broad regulatory control in other Gram-negative bacteria and set out to test this. Here, we use differential proteomics to investigate changes caused by the presence of the arsR gene in human microbiome-relevant Escherichia coli during arsenite (AsIII) exposure. We show that ArsR has broad-ranging impacts such as the expression of TCA cycle enzymes during AsIII stress. Additionally, we found that the Isc [Fe-S] cluster and molybdenum cofactor assembly proteins are upregulated regardless of the presence of ArsR under these same conditions. An important finding from this differential proteomics analysis was the identification of response mechanisms that were strain-, ArsR-, and arsenic-specific, providing new clarity to this complex regulon. Given the widespread occurrence of the arsRBC operon, these findings should have broad applicability across microbial genera, including sensitive environments such as the human gastrointestinal tract.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.