Animal & Range Sciences
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9
The curricula in animal science provide students with a firm foundation in the biological and natural sciences, animal breeding, reproductive physiology, nutrition, and livestock production and management. Natural Resources & Rangeland Ecology focuses on managing the interaction of livestock, and wildlife and their rangeland habitats. Emphasis is placed on soil, water and vegetation attributes which influence habitat ecology and management of livestock and wildlife.
Browse
3 results
Search Results
Item Molecular Pathways for Muscle and Adipose Tissue Are Altered between Beef Steers Classed as Choice or Standard(MDPI AG, 2023-06) Haderlie, Sarah A.; Hieber, Jordan K.; Boles, Jane A.; Berardinelli, Berardinelli; Thomson, Jennifer M.Targets for finished livestock are often determined by expected fat, either subcutaneous or intramuscular. These targets are used frequently to improve eating quality. Lower intramuscular fat, lack of product uniformity, and insufficient tenderness can negatively impact beef acceptability. This study aimed to investigate the differences in gene expression that alter metabolism and intercellular signaling in the muscle and adipose tissue in beef carcasses at different fat endpoints. In this study, longissimus thoracis muscle samples and adipose tissue were collected at harvest, and RNA was extracted and then sequenced using RNAseq. Differential expression was determined using edgeR, and p-values were adjusted using the Benjamini–Hochberg method. A corrected p-value of 0.005 and log2 (fold change) of >1 were the threshold to identify differential expression. Comparison between intermuscular and subcutaneous fat showed no differences in the genes activated in the two adipose tissue depots, suggesting that subcutaneous fat was an adequate sample. Carcass data allowed the classification of carcasses by USDA quality grades (marbling targets). In comparing muscle from Standard and Choice carcasses, 15 genes were downregulated, and 20 were upregulated. There were 49 downregulated and 113 upregulated genes comparing adipose tissue from Standard and Choice carcasses. These genes are related to the metabolism of fat and energy. This indicates that muscle transcript expression varies less than adipose. In addition, subcutaneous fat can be used to evaluate transcript changes in fat. However, it is unclear whether these fat tissues can be used as surrogates for marbling.Item Identification of Genomic Regions for Carcass Quality Traits within the American Simmental Association Carcass Merit Program(MDPI, 2021-02) Hieber, Jordan K.; Endecott, Rachel L.; Boles, Jane A.; Thomson, Jennifer M.USDA quality and yield grade are primary driving forces for carcass value in the United States. Carcass improvements can be achieved by making selection decisions based on the results of genetic evaluations in the form of expected progeny differences (EPD), real-time ultrasound imaging, and physical evaluation of candidate breeding animals. In an effort to advance their ability to accurately predict the breeding value of potential sires for carcass traits, the American Simmental Association launched the Carcass Merit Program as a means to collect progeny sire group carcass information. All records were extracted from the American Simmental Association database. Progeny data were organized by sire family and progeny performance phenotypes were constructed. Sire genotypes were filtered, and a multi-locus mixed linear model was used to perform an association analysis on the genotype data, while correcting for cryptic relatedness and pedigree structure. Three chromosomes were found to have genome-wide significance and this conservative approach identified putative QTL in those regions. Three hundred ninety-three novel regions were identified across all traits, as well as 290 novel positional candidate genes. Correlations between carcass characteristics and maternal traits were less unfavorable than those previously reported.Item Differential haptoglobin responsiveness to a Mannheimia haemolytica challenge altered immunologic, physiologic, and behavior responses in beef steers(Oxford University Press, 2021-01) Wottlin, Lauren R.; Carstens, Gordon E.; Kayser, William C.; Pinchak, William E.; Thomson, Jennifer M.; Copie, Valerie; O'Shea-Stone, Galen P.Indicator traits associated with disease resiliency would be useful to improve the health and welfare of feedlot cattle. A post hoc analysis of data collected previously (Kayser et al., 2019a) was conducted to investigate differences in immunologic, physiologic, and behavioral responses of steers (N = 36, initial BW = 386 ± 24 kg) that had differential haptoglobin (HPT) responses to an experimentally induced challenge with Mannheimia haemolytica (MH). Rumen temperature, DMI, and feeding behavior data were collected continuously, and serial blood samples were collected following the MH challenge. Retrospectively, it was determined that 9 of the 18 MH-challenged steers mounted a minimal HPT response, despite having similar leukocyte and temperature responses to other MH-challenged steers with a greater HPT response. Our objective was to examine differences in behavioral and physiological responses between MH-challenged HPT responsive (RES; n = 9), MH-challenged HPT nonresponsive (NON; n = 9), and phosphate-buffered saline-inoculated controls (CON; n = 18). Additionally, 1H NMR analysis was conducted to determine whether the HPT-responsive phenotype affected serum metabolite profiles. The RES steers had lesser (P < 0.05) cortisol concentrations than NON and CON steers. The magnitude of the increases in neutrophil concentrations and rumen temperature, and the reduction in DMI following the MH challenge were greatest (P < 0.05) in RES steers. Univariate analysis of serum metabolites indicated differences between RES, NON, and CON steers following the MH challenge; however, multivariate analysis revealed no difference between HPT-responsive phenotypes. Prior to the MH challenge, RES steers had longer (P < 0.05) head down and bunk visit durations, slower eating rates (P < 0.01) and greater (P < 0.05) daily variances in bunk visit frequency and head down duration compared with NON steers, suggesting that feeding behavior patterns were associated with the HPT-responsive phenotype. During the 28-d postchallenge period, RES steers had decreased (P < 0.05) final BW, tended (P = 0.06) to have lesser DMI, and had greater (P < 0.05) daily variances in head down and bunk visit durations compared with NON steers, which may have been attributed to their greater acute-phase protein response to the MH challenge. These results indicate that the HPT-responsive phenotype affected feeding behavior patterns and may be associated with disease resiliency in beef cattle.