Animal & Range Sciences
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9
The curricula in animal science provide students with a firm foundation in the biological and natural sciences, animal breeding, reproductive physiology, nutrition, and livestock production and management. Natural Resources & Rangeland Ecology focuses on managing the interaction of livestock, and wildlife and their rangeland habitats. Emphasis is placed on soil, water and vegetation attributes which influence habitat ecology and management of livestock and wildlife.
Browse
14 results
Search Results
Item Plasticity in the Human Gut Microbiome Defies Evolutionary Constraints(2019-07-19) Gomez, Andres; Sharma, Ashok Kumar; Mallott, Elizabeth K.; Petrzelkova, Klara J.; Jost Robinson, Carolyn A.; Yeoman, Carl J.; Carbonero, Franck; Pafco, Barbora; Rothman, Jessica M.; Ulanov, Alexander; Vlckova, Klara; Amato, Katherine R.; Schnorr, Stephanie L.; Dominy, Nathaniel J.; Modry, David; Todd, Angelique F.; Torralba, Manolito; Nelson, Karen E.; Burns, Michael B.; Blekhman, Ran; Remis, Melissa; Stumpf, Rebecca M.; Wilson, Brenda A.; Gaskins, H. Rex; Garber, Paul A.; White, Bryan A.; Leigh, Steven R.The gut microbiome of primates, including humans, is reported to closely follow host evolutionary history, with gut microbiome composition being specific to the genetic background of its primate host. However, the comparative models used to date have mainly included a limited set of closely related primates. To further understand the forces that shape the primate gut microbiome, with reference to human populations, we expanded the comparative analysis of variation among gut microbiome compositions and their primate hosts, including 9 different primate species and 4 human groups characterized by a diverse set of subsistence patterns (n = 448 samples). The results show that the taxonomic composition of the human gut microbiome, at the genus level, exhibits increased compositional plasticity. Specifically, we show unexpected similarities between African Old World monkeys that rely on eclectic foraging and human populations engaging in nonindustrial subsistence patterns; these similarities transcend host phylogenetic constraints. Thus, instead of following evolutionary trends that would make their microbiomes more similar to that of conspecifics or more phylogenetically similar apes, gut microbiome composition in humans from nonindustrial populations resembles that of generalist cercopithecine monkeys. We also document that wild cercopithecine monkeys with eclectic diets and humans following nonindustrial subsistence patterns harbor high gut microbiome diversity that is not only higher than that seen in humans engaging in industrialized lifestyles but also higher compared to wild primates that typically consume fiber-rich diets.Item Pelleted-hay alfalfa feed increases sheep wether weight gain and rumen bacterial richness over loose-hay alfalfa feed(2019-06) Ishaq, Suzanne L.; Lachman, Medora M.; Wenner, Benjamin A.; Baeza, Amy; Butler, Molly; Gates, Emily; Olivo, Sarah; Geddes, Julie Buono; Hatfield, Patrick G.; Yeoman, Carl J.Diet composed of smaller particles can improve feed intake, digestibility, and animal growth or health, but in ruminant species can reduce rumination and buffering – the loss of which may inhibit fermentation and digestibility. However, the explicit effect of particle size on the rumen microbiota remains untested, despite their crucial role in digestion. We evaluated the effects of reduced particle size on rumen microbiota by feeding long-stem (loose) alfalfa hay compared to a ground and pelleted version of the same alfalfa in yearling sheep wethers. In situ digestibility of the pelleted diet was greater at 48 h compared with loose hay; however, distribution of residual fecal particle sizes in sheep did not differ between the dietary treatments at any time point. Both average daily gain and feed efficiency were greater for the wethers consuming the pelleted diet. Observed bacterial richness was very low at the end of the adaptation period and increased over the course of the study, suggesting the rumen bacterial community was still in flux after two weeks of adaptation. The pelleted-hay diet group had a greater increase in bacterial richness, including common fibrolytic rumen inhabitants. The pelleted diet was positively associated with several Succiniclasticum, a Prevotella, and uncultured taxa in the Ruminococcaceae and Rickenellaceae families and Bacteroidales order. Pelleting an alfalfa hay diet for sheep does shift the rumen microbiome, though the interplay of diet particle size, retention and GI transit time, microbial fermentative and hydrolytic activity, and host growth or health is still largely unexplored.Item Ground Juniperus pinchotii and urea in supplements fed to Rambouillet ewe lambs Part 2: Ewe lamb rumen microbial communities(2018-12) Ishaq, Suzanne L.; Yeoman, Carl J.; Whitney, T. R.This study evaluated effects of ground redberry juniper (Juniperus pinchotii) and urea in dried distillers grains with solubles-based supplements fed to Rambouillet ewe lambs (n = 48) on rumen physiological parameters and bacterial diversity. In a randomized study (40 d), individually-penned lambs were fed ad libitum ground sorghum-sudangrass hay and of 1 of 8 supplements (6 lambs/treatment; 533 g/d; as-fed basis) in a 4 x 2 factorial design with 4 concentrations of ground juniper (15%, 30%, 45%, or 60% of DM) and 2 levels of urea (1% or 3% of DM). Increasing juniper resulted in minor changes in microbial β-diversity (PERMANOVA, pseudo F = 1.33, P = 0.04); however, concentrations of urea did not show detectable broad-scale differences at phylum, family, or genus levels according to ANOSIM (P > 0.05), AMOVA (P > 0.10), and PERMANOVA (P > 0.05). Linear discriminant analysis indicated some genera were specific to certain dietary treatments (P < 0.05), though none of these genera were present in high abundance; high concentrations of juniper were associated with Moraxella and Streptococcus, low concentrations of urea were associated with Fretibacterium, and high concentrations of urea were associated with Oribacterium and Pyramidobacter. Prevotella were decreased by juniper and urea. Ruminococcus, Butyrivibrio, and Succiniclasticum increased with juniper and were positively correlated (Spearman\'s, P < 0.05) with each other but not to rumen factors, suggesting a symbiotic interaction. Overall, there was not a juniper x urea interaction for total VFA, VFA by concentration or percent total, pH, or ammonia (P > 0.29). When considering only percent inclusion of juniper, ruminal pH and proportion of acetic acid linearly increased (P < 0.001) and percentage of butyric acid linearly decreased (P = 0.009). Lamb ADG and G:F were positively correlated with Prevotella (Spearman\'s, P < 0.05) and negatively correlated with Synergistaceae, the BS5 group, and Lentisphaerae. Firmicutes were negatively correlated with serum urea nitrogen, ammonia, total VFA, total acetate, and total propionate. Overall, modest differences in bacterial diversity among treatments occurred in the abundance or evenness of several OTUs, but there was not a significant difference in OTU richness. As diversity was largely unchanged, the reduction in ADG and lowerend BW was likely due to reduced DMI rather than a reduction in microbial fermentative ability.Item Biogeographical Differences in the Influence of Maternal Microbial Sources on the Early Successional Development of the Bovine Neonatal Gastrointestinal tract(2018-02) Yeoman, Carl J.; Ishaq, Suzanne L.; Bichi, Elena; Olivo, Sarah K.; Lowe, James; Aldridge, Brian M.The impact of maternal microbial influences on the early choreography of the neonatal calf microbiome were investigated. Luminal content and mucosal scraping samples were collected from ten locations in the calf gastrointestinal tract (GIT) over the first 21 days of life, along with postpartum maternal colostrum, udder skin, and vaginal scrapings. Microbiota were found to vary by anatomical location, between the lumen and mucosa at each GIT location, and differentially enriched for maternal vaginal, skin, and colostral microbiota. Most calf sample sites exhibited a gradual increase in α-diversity over the 21 days beginning the first few days after birth. The relative abundance of Firmicutes was greater in the proximal GIT, while Bacteroidetes were greater in the distal GIT. Proteobacteria exhibited greater relative abundances in mucosal scrapings relative to luminal content. Forty-six percent of calf luminal microbes and 41% of mucosal microbes were observed in at-least one maternal source, with the majority being shared with microbes on the skin of the udder. The vaginal microbiota were found to harbor and uniquely share many common and well-described fibrolytic rumen bacteria, as well as methanogenic archaea, potentially indicating a role for the vagina in populating the developing rumen and reticulum with microbes important to the nutrition of the adult animal.Item Cigarette smoking is associated with an altered vaginal tract metabolomic profile(2018-01) Nelson, Tiffanie M.; Borgogna, Joanna-Lynn C.; Michalek, R. D.; Roberts, David W.; Rath, J. M.; Glover, E. D.; Ravel, Jacques; Shardell, M. D.; Yeoman, Carl J.; Brotman, Rebecca M.Cigarette smoking has been associated with both the diagnosis of bacterial vaginosis (BV) and a vaginal microbiota lacking protective Lactobacillus spp. As the mechanism linking smoking with vaginal microbiota and BV is unclear, we sought to compare the vaginal metabolomes of smokers and non-smokers (17 smokers/19 non-smokers). Metabolomic profiles were determined by gas and liquid chromatography mass spectrometry in a cross-sectional study. Analysis of the 16S rRNA gene populations revealed samples clustered into three community state types (CSTs) ---- CST-I (L. crispatus-dominated), CST-III (L. iners-dominated) or CST-IV (low-Lactobacillus). We identified 607 metabolites, including 12 that differed significantly (q-value < 0.05) between smokers and non-smokers. Nicotine, and the breakdown metabolites cotinine and hydroxycotinine were substantially higher in smokers, as expected. Among women categorized to CST-IV, biogenic amines, including agmatine, cadaverine, putrescine, tryptamine and tyramine were substantially higher in smokers, while dipeptides were lower in smokers. These biogenic amines are known to affect the virulence of infective pathogens and contribute to vaginal malodor. Our data suggest that cigarette smoking is associated with differences in important vaginal metabolites, and women who smoke, and particularly women who are also depauperate for Lactobacillus spp., may have increased susceptibilities to urogenital infections and increased malodor.Item Differences in amino acid catabolism by gut microbes with/without prebiotics inclusion in GDDY-based diet affect feed utilization in rainbow trout(2017-09) Betiku, Omolola C.; Yeoman, Carl J.; Gaylord, T. Gibson; Duff, Glenn C.; Hamerly, Timothy; Bothner, Brian; Block, Stephanie S.; Sealey, Wendy M.There is the need to enhance feed efficiency and growth of rainbow trout to reduce production costs of cultured fish. This study conducted a 3 × 4 factorial experiment with three graded levels of grain distiller dried yeast (GDDY) protein (0%, 50%, 75%) as replacement for fishmeal and four different prebiotics inclusion levels (0% (control), 0.4%, 1% mannooligosaccharides (MOS), and 1% GroBiotic A). The feeding trial was conducted for 12 weeks during which fish were fed daily to apparent satiation. Growth of rainbow trout was not affected by replacement of fishmeal with GDDY, but feed conversion ratio (P < 0.0001) was greater at the highest level of GDDY inclusion. Increasing GDDY inclusion significantly increased feed intake (P < 0.00015), which resulted in poor feed utilization. Acetic (P = 0.1994), propionic (P = 0.8037), butyric (P = 0.6268), valeric (P = 0.5877), and isovaleric (P = 0.5919) acids profiles did not differ by diet nor with inclusion of MOS or GroBiotic A. Whole shotgun metagenomic analyses of the gastrointestinal tract (GIT) microbiota revealed enrichment in the fungal phyla Ascomycota and Basidiomycota and the bacterial phylum Actinobacteria in the GDDY-fed fish compared to those fed the control fishmeal-based diet, which may be reflective of the species endogenous in GDDY. Microbial genes involved in branched-chain amino acid metabolism (glutamate, glutamine, aspartate) (P = 0.028) and glutamate dehydrogenase clusters (P = 0.0192), were also elevated in the fish fed the 75% GDDY-based diet. The results from this study indicate the potential for microbially-mediated catabolism of the non-essential amino acids, and suggest this activity may significantly influence efficient utilization of dietary nitrogen in the yeast-based protein diet.Item Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota(2017-06) Perea, K.; Perz, Katharine A.; Olivo, Sarah K.; Williams, Andrew F.; Lachman, Medora M.; Ishaq, Suzanne L.; Thomson, Jennifer M.; Yeoman, Carl J.Several studies have revealed differences in rumen-located microbes between greatly efficient and inefficient animals; however, how the microbiota vary in the hind gastrointestinal tract (GIT) has only been sparsely explored and how they vary in the small intestine remains to be determined. We therefore sampled the microbiota of the duodenum, jejunum, ileum, colon, and colorectally-obtained feces, in addition to the rumen of 12 lambs that, in a residual feed intake trial, were found to be at either extreme of feed efficiency phenotypes. The 16S rRNA gene (V3-V4 region) profiles of all samples were analyzed and revealed unique microbiota in all GIT locations except the jejunum and ileum (ANOSIM R > 0.2, P < 0.001). Measures of beta-diversity revealed greater dissimilarity between more anatomically distant GIT locations (e.g., Rumen-Duodenum, ANOSIM R = 0.365, P < 0.001; Rumen-Colon, ANOSIM R = 1, P < 0.001) with the nearest distal region typically more similar than the nearest proximal location. The relative abundances of 13 operational taxonomic units (OTUs) from the duodenum, jejunum, colon, and feces, as well as the rumen, differed between efficient and inefficient animals (Bonferroni corrected, P < 0.05), while another 2 OTUs trended toward significance. These OTUs were classified as taxa with known roles in fibrolysis (Fibrobacteres, Ruminococcaceae, and Saccharofermentans) and others that are commonly associated with health (Bifidobacteriaceae, and Christensenellaceae) and dysbiosis (Proteobacteria). Our findings show biospatial delineations of microbiota throughout the GIT and suggest that feed efficiency extends beyond the rumen, transcending these regions, and involves increases in both rumen-and colon-located fibrolytic taxa, increases in bifidobacterial species in the small intestine, and reductions in small intestine and distal GIT-located Proteobacteria.Item Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure(2017-02) Ishaq, Suzanne L.; Johnson, Stephen P.; Miller, Zachariah J.; Lehnhoff, Erik A.; Olivo, Sarah K.; Yeoman, Carl J.; Menalled, Fabian D.Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P<0.001) and had more discriminant taxa delineating groups (linear discriminant analysis). Living inoculum soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P<0.05), and more discriminant taxa than conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.Item Effect of Antibiotic Treatment on the Gastrointestinal Microbiome of Free-Ranging Western Lowland Gorillas (Gorilla g. gorilla)(2016-11) Vickova, Klara; Gomez, Andres; Whittier, Christopher A.; Todd, Angelique F.; Yeoman, Carl J.; Nelson, Karen E.; Wilson, Brenda A.; Stumpf, Rebecca M.; Modry, David; White, Bryan A.; Leigh, Steven R.The mammalian gastrointestinal (GI) microbiome, which plays indispensable roles in host nutrition and health, is affected by numerous intrinsic and extrinsic factors. Among them, antibiotic (ATB) treatment is reported to have a significant effect on GI microbiome composition in humans and other animals. However, the impact of ATBs on the GI microbiome of free-ranging or even captive great apes remains poorly characterized. Here, we investigated the effect of cephalosporin treatment (delivered by intramuscular dart injection during a serious respiratory outbreak) on the GI microbiome of a wild habituated group of western lowland gorillas (Gorilla gorilla gorilla) in the Dzanga Sangha Protected Areas, Central African Republic. We examined 36 fecal samples from eight individuals, including samples before and after ATB treatment, and characterized the GI microbiome composition using Illumina-MiSeq sequencing of the bacterial 16S rRNA gene. The GI microbial profiles of samples from the same individuals before and after ATB administration indicate that the ATB treatment impacts GI microbiome stability and the relative abundance of particular bacterial taxa within the colonic ecosystem of wild gorillas. We observed a statistically significant increase in Firmicutes and a decrease in Bacteroidetes levels after ATB treatment. We found disruption of the fibrolytic community linked with a decrease of Ruminoccocus levels as a result of ATB treatment. Nevertheless, the nature of the changes observed after ATB treatment differs among gorillas and thus is dependent on the individual host. This study has important implications for ecology, management, and conservation of wild primates.Item Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis(2016-02) Depres, Jordane; Forano, Evelyne; Lepercq, Pascale; Comtet-Marre, Sophie; Jubelin, Grégory; Yeoman, Carl J.; Berg Miller, Margret E.; Fields, Christopher J.; Terrapon, Nicolas; Le Bourvellec, Carine; Renard, Catherine M.G.C.; Henrissat, Bernard; White, Bryan A.; Mosoni, PascaleBackground: Diet and particularly dietary fibres have an impact on the gut microbiome and play an important role in human health and disease. Pectin is a highly consumed dietary fibre found in fruits and vegetables and is also a widely used additive in the food industry. Yet there is no information on the effect of pectin on the human gut microbiome. Likewise, little is known on gut pectinolytic bacteria and their enzyme systems. This study was undertaken to investigate the mechanisms of pectin degradation by the prominent human gut symbiont Bacteroides xylanisolvens. Results: Transcriptomic analyses of B. xylanisolvens XB1A grown on citrus and apple pectins at mid- and late-log phases highlighted six polysaccharide utilization loci (PUL) that were overexpressed on pectin relative to glucose. The PUL numbers used in this report are those given by Terrapon et al. (Bioinformatics 31(5):647-55, 2015) and found in the PUL database: http://www.cazy.org/PULDB/. Based on their CAZyme composition, we propose that PUL 49 and 50, the most overexpressed PULs on both pectins and at both growth phases, are involved in homogalacturonan (HG) and type I rhamnogalacturonan (RGI) degradation, respectively. PUL 13 and PUL 2 could be involved in the degradation of arabinose-containing side chains and of type II rhamnogalacturonan (RGII), respectively. Considering that HG is the most abundant moiety (>70 %) within pectin, the importance of PUL 49 was further investigated by insertion mutagenesis into the susC-like gene. The insertion blocked transcription of the susC-like and the two downstream genes (susD-like/FnIII). The mutant showed strong growth reduction, thus confirming that PUL 49 plays a major role in pectin degradation. Conclusion: This study shows the existence of six PULs devoted to pectin degradation by B. xylanisolvens, one of them being particularly important in this function. Hence, this species deploys a very complex enzymatic machinery that probably reflects the structural complexity of pectin. Our findings also highlight the metabolic plasticity of B. xylanisolvens towards dietary fibres that contributes to its competitive fitness within the human gut ecosystem. Wider functional and ecological studies are needed to understand how dietary fibers and especially plant cell wall polysaccharides drive the composition and metabolism of the fibrolytic and non-fibrolytic community within the gut microbial ecosystem.