The origin of extracellular DNA in bacterial biofilm infections in vivo
Date
2020-03
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford University Press
Abstract
Extracellular DNA (eDNA) plays an important role in both the aggregation of bacteria and in the interaction of the resulting biofilms with polymorphonuclear leukocytes (PMNs) during an inflammatory response. Here, transmission electron and confocal scanning laser microscopy were used to examine the interaction between biofilms of Pseudomonas aeruginosa and PMNs in a murine implant model and in lung tissue from chronically infected cystic fibrosis patients. PNA FISH, DNA staining, labeling of PMN DNA with a thymidine analogue and immunohistochemistry were applied to localize bacteria, eDNA, PMN-derived eDNA, PMN-derived histone H3 (H3), neutrophil elastase (NE) and citrullinated H3 (citH3). Host-derived eDNA was observed surrounding bacterial biofilms but not within the biofilms. H3 localized to the lining of biofilms while NE was found throughout biofilms. CitH3, a marker for neutrophil extracellular traps (NETs) was detected only sporadically indicating that most host-derived eDNA in vivo was not a result of NETosis. Together these observations show that, in these in vivo biofilm infections with P. aeruginosa, the majority of eDNA is found external to the biofilm and derives from the host.
Description
Keywords
Citation
Alhede, M., Alhede, M., Qvortrup, K., Kragh, K. N., Jensen, P. Ø., Stewart, P. S., & Bjarnsholt, T. (2020). The origin of extracellular DNA in bacterial biofilm infections in vivo. Pathogens and disease, 78(2), ftaa018.
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as The Author(s) 2019. Published by Oxford University Press on behalf of FEMS. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use,
distribution, and reproduction in any medium, provided the original work is properly cited.