Solubility of 2,5-Furandicarboxylic Acid in Pure and Mixed Organic Solvent Systems at 293 K Predicted Using Hansen Solubility Parameters

dc.contributor.authorMolinaro, Jacob M.
dc.contributor.authorCarroll, M.
dc.contributor.authorMarchan, Gabriela T.
dc.contributor.authorWettstein, Stephanie G.
dc.date.accessioned2024-10-22T18:07:28Z
dc.date.issued2024-07
dc.description.abstractCentral to the production of polyethylene furanoate (PEF), a bioplastic that could potentially replace petroleum-derived plastics, is 2,5-furandicarboxylic acid (FDCA). FDCA is a chemical derived from biomass that has low solubility in traditionally used solvents such as water. Thus, identifying solvents that can solubilize significant amounts of FDCA could allow for lower PEF production costs. In this study, FDCA solubility was investigated in nine pure solvents including H2O, acetonitrile (ACN), γ-valerolactone (GVL), γ-butyrolactone (GBL), ethanol (EtOH), methanol (MeOH), dimethyl sulfoxide (DMSO), sulfolane (SULF), and tetrahydrofuran (THF), eight binary, and three ternary solvent blends at 293 K. For all binary systems excluding DMSO and MeOH, the solubility of FDCA increased 1.5–65 times compared to the pure organic solvent, and the FDCA solubility was at least 10 times higher when compared to pure water. Specifically, the 20/80 w/w H2O/DMSO system solubilized 23.1 wt % FDCA, the highest of any binary blend studied, and 190 times more solubility than in pure water. In 20/80 w/w H2O/THF, the FDCA solubility was 60 times higher than pure water. In ternary blends that included DMSO, H2O, and either GVL, THF, or SULF, solubility increased by at least 6.6 times relative to the pure secondary organic component and 54 times relative to pure water. Using Hansen solubility parameters (HSPs), the radius of interaction (Ri, j) was found to be more strongly correlated to FDCA solubility than individual HSPs or the total solubility parameter. A MATLAB-based optimization code was developed and successful in minimizing the Ri, j of a solvent blend to maximize FDCA solubility in binary and ternary aqueous solvents.
dc.identifier.citationMolinaro, J. M., Carroll, M. R., Young, A. S., & Wettstein, S. G. (2024). Solubility of 2, 5-Furandicarboxylic Acid in Pure and Mixed Organic Solvent Systems at 293 K Predicted Using Hansen Solubility Parameters. ACS omega, 9(28), 30708-30716.
dc.identifier.doi10.1021/acsomega.4c03170
dc.identifier.issn2470-1343
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/18885
dc.language.isoen_US
dc.publisherAmerican Chemical Society
dc.rightscc-by
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectethanol
dc.subjectmixtures
dc.subjectsolubility
dc.subjectsolubilization
dc.subjectsolvents
dc.titleSolubility of 2,5-Furandicarboxylic Acid in Pure and Mixed Organic Solvent Systems at 293 K Predicted Using Hansen Solubility Parameters
dc.typeArticle
mus.citation.extentfirstpage1
mus.citation.extentlastpage9
mus.citation.issue28
mus.citation.journaltitleACS Omega
mus.citation.volume9
mus.data.thumbpage6
mus.relation.collegeCollege of Engineering
mus.relation.departmentChemical & Biological Engineering
mus.relation.universityMontana State University - Bozeman

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
molinaro-solubility-organic-solvent-systems-2024.pdf
Size:
2.72 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
825 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.