Changes in Tea Plant Secondary Metabolite Profiles as a Function of Leafhopper Density and Damage

dc.contributor.authorScott, Eric R.
dc.contributor.authorLi, Xin
dc.contributor.authorWei, Ji-Peng
dc.contributor.authorKfoury, Nicole
dc.contributor.authorMorimoto, Joshua
dc.contributor.authorGuo, Ming-Ming
dc.contributor.authorAgyei, Amma
dc.contributor.authorRobbat Jr., Albert
dc.contributor.authorAhmed, Selena
dc.contributor.authorCash, Sean B.
dc.contributor.authorGriffin, Timothy S.
dc.contributor.authorStepp, John R.
dc.contributor.authorHan, Wen-Yen
dc.contributor.authorOrians, Colin M.
dc.date.accessioned2021-02-18T16:43:57Z
dc.date.available2021-02-18T16:43:57Z
dc.date.issued2020-05
dc.description.abstractInsect herbivores have dramatic effects on the chemical composition of plants. Many of these induced metabolites contribute to the quality (e.g., flavor, human health benefits) of specialty crops such as the tea plant (Camellia sinensis). Induced chemical changes are often studied by comparing plants damaged and undamaged by herbivores. However, when herbivory is quantitative, the relationship between herbivore pressure and induction can be linearly or non-linearly density dependent or density independent, and induction may only occur after some threshold of herbivory. The shape of this relationship can vary among metabolites within plants. The tea green leafhopper (Empoasca onukii) can be a widespread pest on tea, but some tea farmers take advantage of leafhopper-induced metabolites in order to produce high-quality “bug-bitten” teas such as Eastern Beauty oolong. To understand the effects of increasing leafhopper density on tea metabolites important for quality, we conducted a manipulative experiment exposing tea plants to feeding by a range of E. onukii densities. After E. onukii feeding, we measured volatile and non-volatile metabolites, and quantified percent damaged leaf area from scanned leaf images. E. onukii density had a highly significant effect on volatile production, while the effect of leaf damage was only marginally significant. The volatiles most responsive to leafhopper density were mainly terpenes that increased in concentration monotonically with density, while the volatiles most responsive to leaf damage were primarily fatty acid derivatives and volatile phenylpropanoids/benzenoids. In contrast, damage (percent leaf area damaged), but not leafhopper density, significantly reduced total polyphenols, epigallocatechin gallate (EGCG), and theobromine concentrations in a dose-dependent manner. The shape of induced responses varied among metabolites with some changing linearly with herbivore pressure and some responding only after a threshold in herbivore pressure with a threshold around 0.6 insects/leaf being common. This study illustrates the importance of measuring a diversity of metabolites over a range of herbivory to fully understand the effects of herbivores on induced metabolites. Our study also shows that any increases in leafhopper density associated with climate warming, could have dramatic effects on secondary metabolites and tea quality.en_US
dc.identifier.citationScott ER, Li X, Wei J-P, Kfoury N, Morimoto J, Guo M-M, Agyei A, Robbat A Jr, Ahmed S, Cash SB, Griffin TS, Stepp JR, Han W-Y and Orians CM (2020) Changes in Tea Plant Secondary Metabolite Profiles as a Function of Leafhopper Density and Damage. Frontiers in Plant Science 11:636. doi: 10.3389/fpls.2020.00636en_US
dc.identifier.issn1664-462X
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/16132
dc.language.isoen_USen_US
dc.rights© This published version is made available under the CC-BY 4.0 licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titleChanges in Tea Plant Secondary Metabolite Profiles as a Function of Leafhopper Density and Damageen_US
dc.typeArticleen_US
mus.citation.journaltitleFrontiers in Plant Scienceen_US
mus.citation.volume11en_US
mus.data.thumbpage6en_US
mus.identifier.doi10.3389/fpls.2020.00636en_US
mus.relation.collegeCollege of Education, Health & Human Developmenten_US
mus.relation.departmentHealth & Human Development.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ahmed-tea-metabolite-leafhopper.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format
Description:
Changes in Tea Plant Secondary Metabolite Profiles as a Function of Leafhopper Density and Damage (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.