Enhanced trace element mobilization by Earth’s ice sheets

dc.contributor.authorHawkings, Jon R.
dc.contributor.authorSkidmore, Mark L.
dc.contributor.authorWadham, Jemma L.
dc.contributor.authorPriscu, John C.
dc.contributor.authorMorton, Peter L.
dc.contributor.authorHatton, Jade E.
dc.contributor.authorGardner, Christopher B.
dc.contributor.authorKohler, Tyler J.
dc.contributor.authorStibal, Marek
dc.contributor.authorBagshaw, Elizabeth A.
dc.contributor.authorSteigmeyer, August
dc.contributor.authorBarker, Joel
dc.contributor.authorDore, John E.
dc.contributor.authorLyons, W. Berry
dc.contributor.authorTranter, Martyn
dc.contributor.authorSpencer, Robert G. M.
dc.date.accessioned2022-06-06T20:21:00Z
dc.date.available2022-06-06T20:21:00Z
dc.date.issued2020-11
dc.description.abstractTrace elements sustain biological productivity, yet the significance of trace element mobilization and export in subglacial runoff from ice sheets is poorly constrained at present. Here, we present size-fractionated (0.02, 0.22, and 0.45 µm) concentrations of trace elements in subglacial waters from the Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS). Concentrations of immobile trace elements (e.g., Al, Fe, Ti) far exceed global riverine and open ocean mean values and highlight the importance of subglacial aluminosilicate mineral weathering and lack of retention of these species in sediments. Concentrations are higher from the AIS than the GrIS, highlighting the geochemical consequences of prolonged water residence times and hydrological isolation that characterize the former. The enrichment of trace elements (e.g., Co, Fe, Mn, and Zn) in subglacial meltwaters compared with seawater and typical riverine systems, together with the likely sensitivity to future ice sheet melting, suggests that their export in glacial runoff is likely to be important for biological productivity. For example, our dissolved Fe concentration (20,900 nM) and associated flux values (1.4 Gmol y−1) from AIS to the Fe-deplete Southern Ocean exceed most previous estimates by an order of magnitude. The ultimate fate of these micronutrients will depend on the reactivity of the dominant colloidal size fraction (likely controlled by nanoparticulate Al and Fe oxyhydroxide minerals) and estuarine processing. We contend that ice sheets create highly geochemically reactive particulates in subglacial environments, which play a key role in trace elemental cycles, with potentially important consequences for global carbon cycling.en_US
dc.identifier.citationHawkings, J. R., Skidmore, M. L., Wadham, J. L., Priscu, J. C., Morton, P. L., Hatton, J. E., ... & SALSA Science Team. (2020). Enhanced trace element mobilization by Earth’s ice sheets. Proceedings of the National Academy of Sciences, 117(50), 31648-31659.en_US
dc.identifier.issn1091-6490
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/16814
dc.language.isoen_USen_US
dc.publisherProceedings of the National Academy of Sciencesen_US
dc.rights© 2020 National Academy of Sciences.en_US
dc.titleEnhanced trace element mobilization by Earth’s ice sheetsen_US
dc.typeArticleen_US
mus.citation.extentfirstpage31648en_US
mus.citation.extentlastpage31659en_US
mus.citation.issue50en_US
mus.citation.journaltitleProceedings of the National Academy of Sciencesen_US
mus.citation.volume117en_US
mus.data.thumbpage3en_US
mus.identifier.doi10.1073/pnas.2014378117en_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentEarth Sciences.en_US
mus.relation.departmentLand Resources & Environmental Sciences.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Enhanced-2020.pdf
Size:
2.62 MB
Format:
Adobe Portable Document Format
Description:
Enhanced trace element mobilization by Earth’s ice sheets (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.