Using High‐Resolution Satellite Imagery and Deep Learning to Track Dynamic Seasonality in Small Water Bodies

dc.contributor.authorMullen, Andrew L.
dc.contributor.authorWatts, Jennifer D.
dc.contributor.authorRogers, Brendan M.
dc.contributor.authorCarroll, Mark L.
dc.contributor.authorElder, Clayton D.
dc.contributor.authorNoomah, Jonas
dc.contributor.authorWilliams, Zachary
dc.contributor.authorCaraballo‐Vega, Jordan A.
dc.contributor.authorBredder, Allison
dc.contributor.authorRickenbaugh, Eliza
dc.contributor.authorLevenson, Eric
dc.contributor.authorCooley, Sarah W.
dc.contributor.authorHung, Jacqueline K. Y.
dc.contributor.authorFiske, Greg
dc.contributor.authorPotter, Stefano
dc.contributor.authorYang, Yili
dc.contributor.authorMiller, Charles E.
dc.contributor.authorNatali, Susan M.
dc.contributor.authorDouglas, Thomas A.
dc.contributor.authorKyzivat, Ethan D.
dc.date.accessioned2023-07-19T18:20:33Z
dc.date.available2023-07-19T18:20:33Z
dc.date.issued2023-04
dc.descriptionAndrew L. Mullen et al, 2023, Using High‐Resolution Satellite Imagery and Deep Learning to Track Dynamic Seasonality in Small Water Bodies, Geophysical Research Letters, 50, Citation number, 10.1029/2022GL102327. To view the published open abstract, go to https://doi.org/10.1029/2022GL102327en_US
dc.description.abstractSmall water bodies (i.e., ponds; <0.01 km2) play an important role in Earth System processes, including carbon cycling and emissions of methane. Detection and monitoring of ponds using satellite imagery has been extremely difficult and many water maps are biased toward lakes (>0.01 km2). We leverage high-resolution (3 m) optical satellite imagery from Planet Labs and deep learning methods to map seasonal changes in pond and lake areal extent across four regions in Alaska. Our water maps indicate that changes in open water extent over the snow-free season are especially pronounced in ponds. To investigate potential impacts of seasonal changes in pond area on carbon emissions, we provide a case study of open water methane emission budgets using the new water maps. Our approach has widespread applications for water resources, habitat and land cover change assessments, wildlife management, risk assessments, and other biogeochemical modeling efforts.en_US
dc.identifier.citationMullen, A. L., Watts, J. D., Rogers, B. M., Carroll, M. L., Elder, C. D., Noomah, J., et al. (2023). Using high-resolution satellite imagery and deep learning to track dynamic seasonality in small water bodies. Geophysical Research Letters, 50, e2022GL102327. https://doi.org/10.1029/2022GL102327en_US
dc.identifier.issn0094-8276
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/17981
dc.language.isoen_USen_US
dc.publisherAmerican Geophysical Unionen_US
dc.rightscopyright American Geophysical Union 2023en_US
dc.rights.urihttps://perma.cc/K6V9-42JXen_US
dc.subjecthigh-resolutionen_US
dc.subjectsatellite imageryen_US
dc.subjectsmall water bodiesen_US
dc.titleUsing High‐Resolution Satellite Imagery and Deep Learning to Track Dynamic Seasonality in Small Water Bodiesen_US
dc.typeArticleen_US
mus.citation.extentfirstpage1en_US
mus.citation.extentlastpage12en_US
mus.citation.issue7en_US
mus.citation.journaltitleGeophysical Research Lettersen_US
mus.citation.volume50en_US
mus.data.thumbpage2en_US
mus.identifier.doi10.1029/2022GL102327en_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentEarth Sciences.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
mullen-satellite-2023.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
Description:
satellitle imagery

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.