Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling

dc.contributor.authorBauerle, William L.
dc.contributor.authorOren, Ram
dc.contributor.authorWay, Danielle A.
dc.contributor.authorQian, Song S.
dc.contributor.authorStoy, Paul C.
dc.contributor.authorThornton, Peter E.
dc.contributor.authorBowden, Joseph D.
dc.contributor.authorHoffman, Forrest M.
dc.contributor.authorReynolds, Robert F.
dc.description.abstractAlthough temperature is an important driver of seasonal changes in photosynthetic physiology, photoperiod also regulates leaf activity. Climate change will extend growing seasons if temperature cues predominate, but photoperiod-controlled species will show limited responsiveness to warming. We show that photoperiod explains more seasonal variation in photosynthetic activity across 23 tree species than temperature. Although leaves remain green, photosynthetic capacity peaks just after summer solstice and declines with decreasing photoperiod, before air temperatures peak. In support of these findings, saplings grown at constant temperature but exposed to an extended photoperiod maintained high photosynthetic capacity, but photosynthetic activity declined in saplings experiencing a naturally shortening photoperiod; leaves remained equally green in both treatments. Incorporating a photoperiodic correction of photosynthetic physiology into a global-scale terrestrial carbon-cycle model significantly improves predictions of seasonal atmospheric CO2 cycling, demonstrating the benefit of such a function in coupled climate system models. Accounting for photoperiod-induced seasonality in photosynthetic parameters reduces modeled global gross primary production 2.5% (∼4 PgC y−1), resulting in a >3% (∼2 PgC y−1) decrease of net primary production. Such a correction is also needed in models estimating current carbon uptake based on remotely sensed greenness. Photoperiod-associated declines in photosynthetic capacity could limit autumn carbon gain in forests, even if warming delays leaf senescence.en_US
dc.identifier.citationBauerle, William L., Ram Oren, Danielle A. Way, Song S. Qian, Paul Stoy, Peter E. Thornton, Joseph D. Bowden, Forrest M. Hoffman, and Robert F. Reynolds. “Photoperiodic Regulation of the Seasonal Pattern of Photosynthetic Capacity and the Implications for Carbon Cycling.” Proceedings of the National Academy of Sciences 109, no. 22 (May 29, 2012): 8612-8617.en_US
dc.rightsThis Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).en_US
dc.titlePhotoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cyclingen_US
mus.citation.journaltitleProceedings of the National Academy of Sciencesen_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.departmentLand Resources & Environmental Sciences.en_US
mus.relation.universityMontana State University - Bozemanen_US


Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
748.57 KB
Adobe Portable Document Format
Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling (PDF)
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
826 B
Item-specific license agreed upon to submission
Copyright (c) 2002-2022, LYRASIS. All rights reserved.