Experimental guidance for discovering genetic networks through hypothesis reduction on time series

dc.contributor.authorCummins, Breschine
dc.contributor.authorMotta, Francis C.
dc.contributor.authorMoseley, Robert C.
dc.contributor.authorDeckard, Anastasia
dc.contributor.authorCampione, Sophia
dc.contributor.authorGedeon, Tomáš
dc.contributor.authorMischaikow, Konstantin
dc.contributor.authorHaase, Steven B.
dc.date.accessioned2023-01-27T17:48:21Z
dc.date.available2023-01-27T17:48:21Z
dc.date.issued2022-10
dc.description.abstractLarge programs of dynamic gene expression, like cell cyles and circadian rhythms, are controlled by a relatively small “core” network of transcription factors and post-translational modifiers, working in concerted mutual regulation. Recent work suggests that system-independent, quantitative features of the dynamics of gene expression can be used to identify core regulators. We introduce an approach of iterative network hypothesis reduction from time-series data in which increasingly complex features of the dynamic expression of individual, pairs, and entire collections of genes are used to infer functional network models that can produce the observed transcriptional program. The culmination of our work is a computational pipeline, Iterative Network Hypothesis Reduction from Temporal Dynamics (Inherent dynamics pipeline), that provides a priority listing of targets for genetic perturbation to experimentally infer network structure. We demonstrate the capability of this integrated computational pipeline on synthetic and yeast cell-cycle data.en_US
dc.identifier.citationCummins B, Motta FC, Moseley RC, Deckard A, Campione S, Gameiro M, et al. (2022) Experimental guidance for discovering genetic networks through hypothesis reduction on time series. PLoS Comput Biol 18(10): e1010145. https://doi.org/10.1371/journal.pcbi.1010145en_US
dc.identifier.issn1553-7358
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/17653
dc.language.isoen_USen_US
dc.publisherPublic Library of Scienceen_US
dc.rightscc-byen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectgeneticsen_US
dc.subjectgenetic networksen_US
dc.subjecthypothesis reductionen_US
dc.subjecttime seriesen_US
dc.titleExperimental guidance for discovering genetic networks through hypothesis reduction on time seriesen_US
dc.typeArticleen_US
mus.citation.extentfirstpage1en_US
mus.citation.extentlastpage31en_US
mus.citation.issue10en_US
mus.citation.journaltitlePLOS Computational Biologyen_US
mus.citation.volume18en_US
mus.data.thumbpage4en_US
mus.identifier.doi10.1371/journal.pcbi.1010145en_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentMathematical Sciences.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
cummins-genetic-2022.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description:
genetic networks

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.