Quantitative NMR metabolite profiling of methicillin-resistant and methicillin-susceptible Staphylococcus aureus discriminates between biofilm and planktonic phenotypes
dc.contributor.author | Ammons, Mary Cloud B. | |
dc.contributor.author | Tripet, Brian P. | |
dc.contributor.author | Carlson, Ross P. | |
dc.contributor.author | Kirker, Kelly R. | |
dc.contributor.author | Gross, M. A. | |
dc.contributor.author | Stanisich, Jessica J. | |
dc.contributor.author | Copie, Valerie | |
dc.date.accessioned | 2016-12-05T17:40:49Z | |
dc.date.available | 2016-12-05T17:40:49Z | |
dc.date.issued | 2013-06 | |
dc.description.abstract | Wound bioburden in the form of colonizing biofilms is a major contributor to nonhealing wounds. Staphylococcus aureus is a Gram-positive, facultative anaerobe commonly found in chronic wounds; however, much remains unknown about the basic physiology of this opportunistic pathogen, especially with regard to the biofilm phenotype. Transcriptomic and proteomic analysis of S. aureus biofilms have suggested that S. aureus biofilms exhibit an altered metabolic state relative to the planktonic phenotype. Herein, comparisons of extracellular and intracellular metabolite profiles detected by 1H NMR were conducted for methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) S. aureus strains grown as biofilm and planktonic cultures. Principal component analysis distinguished the biofilm phenotype from the planktonic phenotype, and factor loadings analysis identified metabolites that contributed to the statistical separation of the biofilm from the planktonic phenotype, suggesting that key features distinguishing biofilm from planktonic growth include selective amino acid uptake, lipid catabolism, butanediol fermentation, and a shift in metabolism from energy production to assembly of cell-wall components and matrix deposition. These metabolite profiles provide a basis for the development of metabolite biomarkers that distinguish between biofilm and planktonic phenotypes in S. aureus and have the potential for improved diagnostic and therapeutic use in chronic wounds. | en_US |
dc.description.sponsorship | Center for Biofilm Engineering at Montana State University for cultures of S. aureus 10943 and S. aureus 6538; NIH (3P20GM103394−05S1); parent grant (8P20GM103394−05); NIH (1KO1GM103821−01); NIH (1RO3AR060995-01A1); Howard Hughes Medical Institute (HHMI) Undergraduate Fellowship; NIH (1-S10RR13878−01) (S10RR026659-01A1) | en_US |
dc.identifier.citation | Ammons MC, Tripet BP, Carlson RP, Kirker KR, Gross MA, Stanisich JJ, Copié V, "Quantitative NMR metabolite profiling of methicillin-resistant and methicillin-susceptible Staphylococcus aureus discriminates between biofilm and planktonic phenotypes," Journal of Proteome Research, June 2014, 13(6): 2973–85. | en_US |
dc.identifier.issn | 1535-3893 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/12303 | |
dc.title | Quantitative NMR metabolite profiling of methicillin-resistant and methicillin-susceptible Staphylococcus aureus discriminates between biofilm and planktonic phenotypes | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 2973 | en_US |
mus.citation.extentlastpage | 2985 | en_US |
mus.citation.issue | 6 | en_US |
mus.citation.journaltitle | Journal of Proteome Research | en_US |
mus.citation.volume | 13 | en_US |
mus.contributor.orcid | Ammons, Mary Cloud B.|0000-0002-9717-0844 | en_US |
mus.data.thumbpage | 10 | en_US |
mus.identifier.category | Engineering & Computer Science | en_US |
mus.identifier.category | Life Sciences & Earth Sciences | en_US |
mus.identifier.doi | 10.1021/pr500120c | en_US |
mus.relation.college | College of Engineering | en_US |
mus.relation.college | College of Letters & Science | en_US |
mus.relation.department | Biological Sciences. | en_US |
mus.relation.department | Center for Biofilm Engineering. | en_US |
mus.relation.department | Chemical & Biological Engineering. | en_US |
mus.relation.department | Chemistry & Biochemistry. | en_US |
mus.relation.department | Microbiology & Immunology. | en_US |
mus.relation.researchgroup | Center for Biofilm Engineering. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- 14-019_Quantitative_NMR_metabolite__A1b.pdf
- Size:
- 2.83 MB
- Format:
- Adobe Portable Document Format
- Description:
- Quantitative NMR metabolite profiling of methicillin-resistant and methicillin-susceptible Staphylococcus aureus discriminates between biofilm and planktonic phenotypes (PDF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 826 B
- Format:
- Item-specific license agreed upon to submission
- Description: