Robust estimation under a semiparametric propensity model for nonignorable missing data

dc.contributor.authorShetty, Samidha
dc.contributor.authorMa, Yanyuan
dc.contributor.authorZhao, Jiwei
dc.date.accessioned2025-10-30T19:01:42Z
dc.date.issued2025-01
dc.description.abstractWe study the problem of estimating a functional or a parameter in the context where outcome is subject to nonignorable missingness. We completely avoid modeling the regression relation between outcome and covariates, while allowing the propensity to be modeled by a semiparametric relation where the dependence on covariates is unknown and unspecified. This unknown function in the semiparametric propensity model is not directly estimable from the observed data and is the fundamental challenge in the estimation of the parameter of interest. By carefully analyzing the semiparametric structure of the model, we discover that the estimation of the parameter in the propensity model as well as the functional estimation can be carried out without estimating this unknown function. This phenomenon is especially interesting and extremely helpful in our context, because it overcomes the very obstacle that this unknown function cannot be directly estimated from the observed data. The property of the proposed estimator is established rigorously through theoretical derivations, and supported by simulations and a data application.
dc.identifier.citationSamidha Shetty. Yanyuan Ma. Jiwei Zhao. "Robust estimation under a semiparametric propensity model for nonignorable missing data." Electron. J. Statist. 19 (1) 956 - 981, 2025. https://doi.org/10.1214/25-EJS2355
dc.identifier.doi10.1214/25-EJS2355
dc.identifier.issn1935-7524
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/19527
dc.language.isoen_US
dc.publisherInstitute of Mathematical Statistics
dc.rightscc-by
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectefficient influence function
dc.subjectnonignorable missing data
dc.subjectrobust estimation
dc.subjectsemiparametric statistics
dc.titleRobust estimation under a semiparametric propensity model for nonignorable missing data
dc.typeArticle
mus.citation.extentfirstpage1
mus.citation.extentlastpage26
mus.citation.issue1
mus.citation.journaltitleElectronic Journal of Statistics
mus.citation.volume19
mus.relation.collegeCollege of Letters & Science
mus.relation.departmentMathematical Sciences
mus.relation.universityMontana State University - Bozeman

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
shetty-semiparametric-propensity-model-2025.pdf
Size:
4.32 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
825 B
Format:
Item-specific license agreed upon to submission
Description: