Simulation of catalase-dependent tolerance of microbial biofilm to hydrogen peroxide with a biofilm computer model

Thumbnail Image

Date

2023-08

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Science and Business Media LLC

Abstract

Hydrogen peroxide (HP) is a common disinfectant and antiseptic. When applied to a biofilm, it may be expected that the top layer of the biofilm would be killed by HP, the HP would penetrate further, and eventually eradicate the entire biofilm. However, using the Biofilm.jl computer model, we demonstrate a mechanism by which the biofilm can persist, and even become thicker, in the indefinite treatment with an HP solution at concentrations that are lethal to planktonic microorganisms. This surprising result is found to be dependent on the neutralization of HP by dead biomass, which provides protection for living biomass deeper within the biofilm. Practically, to control a biofilm, this result leads to the concept of treating with an HP dose exceeding a critical threshold concentration rather than a sustained, lower-concentration treatment.

Description

Keywords

catalase-dependent tolerance, simulation, microbial biofilm, hydrogen peroxide, biofilm, biofilm computer model

Citation

Stewart, P.S., Owkes, M. Simulation of catalase-dependent tolerance of microbial biofilm to hydrogen peroxide with a biofilm computer model. npj Biofilms Microbiomes 9, 60 (2023). https://doi.org/10.1038/s41522-023-00426-z

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as cc-by
Copyright (c) 2002-2022, LYRASIS. All rights reserved.