Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass

dc.contributor.authorJoetzjer, Emilie
dc.contributor.authorPillet, Michiel
dc.contributor.authorCiais, Philippe
dc.contributor.authorBarbier, N.
dc.contributor.authorChave, Jerome
dc.contributor.authorSchlund, M.
dc.contributor.authorMaignan, F.
dc.contributor.authorBarichivich, Jonathan
dc.contributor.authorLuyssaert, Sebastiaan
dc.contributor.authorHérault, Bruno
dc.contributor.authorPoncet, F.
dc.contributor.authorPoulter, Benjamin
dc.date.accessioned2017-10-16T14:23:47Z
dc.date.available2017-10-16T14:23:47Z
dc.date.issued2017-07
dc.description.abstractDespite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.en_US
dc.description.sponsorshipGordon and Betty Moore Foundation NERC Consortium; Agence Nationale de la Recherche; European Union Climate KIC grant; European Research Councilen_US
dc.identifier.citationJoetzjer, E. , M. Pillet, P. Ciais, N. Barbier, J. Chave, M. Schlund, F. Maignan, J. Barichivich, S. Luyssaert, B. Herault, F. Poncet, and Benjamin Poulter. "Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass." Goephysical Research Letters 44, no. 13 (July 2017): 6823-6832. DOI:https://dx.doi.org/10.1002/2017GL074150.en_US
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/13814
dc.titleAssimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomassen_US
mus.citation.extentfirstpage6823en_US
mus.citation.extentlastpage6832en_US
mus.citation.issue13en_US
mus.citation.journaltitleGeophysical Research Lettersen_US
mus.citation.volume44en_US
mus.contributor.orcidPoulter, Benjamin|0000-0002-9493-8600en_US
mus.data.thumbpage4en_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.identifier.doi10.1002/2017GL074150en_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentEcology.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Joetzjer_GRL_2017.pdf
Size:
997.04 KB
Format:
Adobe Portable Document Format
Description:
Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.