Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass
dc.contributor.author | Joetzjer, Emilie | |
dc.contributor.author | Pillet, Michiel | |
dc.contributor.author | Ciais, Philippe | |
dc.contributor.author | Barbier, N. | |
dc.contributor.author | Chave, Jerome | |
dc.contributor.author | Schlund, M. | |
dc.contributor.author | Maignan, F. | |
dc.contributor.author | Barichivich, Jonathan | |
dc.contributor.author | Luyssaert, Sebastiaan | |
dc.contributor.author | Hérault, Bruno | |
dc.contributor.author | Poncet, F. | |
dc.contributor.author | Poulter, Benjamin | |
dc.date.accessioned | 2017-10-16T14:23:47Z | |
dc.date.available | 2017-10-16T14:23:47Z | |
dc.date.issued | 2017-07 | |
dc.description.abstract | Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations. | en_US |
dc.description.sponsorship | Gordon and Betty Moore Foundation NERC Consortium; Agence Nationale de la Recherche; European Union Climate KIC grant; European Research Council | en_US |
dc.identifier.citation | Joetzjer, E. , M. Pillet, P. Ciais, N. Barbier, J. Chave, M. Schlund, F. Maignan, J. Barichivich, S. Luyssaert, B. Herault, F. Poncet, and Benjamin Poulter. "Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass." Goephysical Research Letters 44, no. 13 (July 2017): 6823-6832. DOI:https://dx.doi.org/10.1002/2017GL074150. | en_US |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/13814 | |
dc.title | Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass | en_US |
mus.citation.extentfirstpage | 6823 | en_US |
mus.citation.extentlastpage | 6832 | en_US |
mus.citation.issue | 13 | en_US |
mus.citation.journaltitle | Geophysical Research Letters | en_US |
mus.citation.volume | 44 | en_US |
mus.contributor.orcid | Poulter, Benjamin|0000-0002-9493-8600 | en_US |
mus.data.thumbpage | 4 | en_US |
mus.identifier.category | Life Sciences & Earth Sciences | en_US |
mus.identifier.doi | 10.1002/2017GL074150 | en_US |
mus.relation.college | College of Letters & Science | en_US |
mus.relation.department | Ecology. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- Joetzjer_GRL_2017.pdf
- Size:
- 997.04 KB
- Format:
- Adobe Portable Document Format
- Description:
- Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass (PDF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 826 B
- Format:
- Item-specific license agreed upon to submission
- Description: