Inorganic carbon fixation and trophic interactions in high-temperature geothermal springs of Yellowstone National Park, WY, USA
| dc.contributor.advisor | Chairperson, Graduate Committee: William P. Inskeep | en |
| dc.contributor.author | Jennings, Ryan deMontmollin | en |
| dc.contributor.other | Laura M. Whitmore, James J. Moran, Helen W. Kreuzer and William P. Inskeep were co-authors of the article, 'Carbon dioxide fixation by metallosphaera yellowstonensis and acidothermophilic iron-oxidizing microbial communities from Yellowstone National Park' in the journal 'The American Society for Microbiology Applied and Environmental Microbiology journal' which is contained within this thesis. | en |
| dc.contributor.other | James J. Moran, Zackary J. Jay, Jacob P. Beam, Laura M. Whitmore, Mark A. Kozubal, Helen W. Kreuzer, and William P. Inskeep were co-authors of the article, 'The extent and mechanisms of carbon dioxide fixation across geochemically diverse high-temperature microbial communities' submitted to the journal 'Nature publishing group nature geosciences journal' which is contained within this thesis. | en |
| dc.contributor.other | Kristopher A. Hunt, Ross P. Carlson and William P. Inskeep were co-authors of the article, 'Genome-enabled multi-scale analysis of autotroph-heterotroph interactions in a high-temperature microbial community' submitted to the journal 'The International Society for Microbial Ecology journal' which is contained within this thesis. | en |
| dc.coverage.spatial | Yellowstone National Park | en |
| dc.date.accessioned | 2016-01-03T17:34:05Z | |
| dc.date.available | 2016-01-03T17:34:05Z | |
| dc.date.issued | 2015 | en |
| dc.description.abstract | Numerous chemotrophic microorganisms inhabit high-temperature (> 65 °C) systems of Yellowstone National Park (WY, USA). Prior geochemical and metagenome characterization has identified the primary electron donors and acceptors and phylotypes distributed across a range in pH and geochemical conditions. Although several chemolithoautotrophs are expected to play a direct role in the fixation of inorganic C in these communities, little work has directly identified the importance of this process in situ. Consequently, the primary goal of this thesis was to evaluate the role of CO 2 fixation across numerous types of geothermal habitats and to explore autotroph-heterotroph interactions that may control community composition. Genes encoding enzymes for inorganic C fixation pathways were identified in assembled genome sequence corresponding to the predominant autotrophs (Crenarchaeota and Aquificales) observed in Fe(III)-oxide mats, sulfur sediments, and filamentous streamer communities. Carbon isotope (13 C) mixing models were used to interpret the 13C compositional values of microbial samples as a function of 13C-dissolved inorganic C (DIC) and 13 C-organic C (DOC and/or landscape sources). The relative abundance of autotrophs versus heterotrophs identified in complementary metagenome analysis and respective CO 2-fixation fractionation factors were utilized in site-specific mixing models to calculate minimum contributions of DIC-derived microbial C across 15 different microbial communities. Genome sequence was also used to develop stoichiometric reaction networks for a primary autotroph (Metallosphaera yellowstonensis) and heterotroph ('Geoarchaeota') important in acidic Fe(III)-oxide mats. Possible modes of biomass production were evaluated for different C sources and/or electron donors as a function of oxygen cost. The total oxygen flux was also used to predict the rate of Fe(II)-oxidation, and these values were compared to Fe(III)-oxide deposition rates and oxygen fluxes measured in situ. Stoichiometric modeling and elementary flux mode analysis established an optimum autotroph to heterotroph ratio (2.4:1) for DIC-derived biomass dependent on Fe(II) as the electron donor. Comparison of predicted Fe(II)-oxidation rates with observed Fe(III)-oxide deposition rates and oxygen flux measurements using microelectrodes suggest the importance of other oxygen consuming processes. Results from this thesis demonstrated the importance of inorganic C fixation in numerous geochemically distinct high-temperature microbial habitats, and the potential for DIC-derived biomass to support other hyperthermophilic heterotrophic organisms. | en |
| dc.identifier.uri | https://scholarworks.montana.edu/handle/1/9208 | en |
| dc.language.iso | en | en |
| dc.publisher | Montana State University - Bozeman, College of Agriculture | en |
| dc.rights.holder | Copyright 2015 by Ryan deMontmollin Jennings | en |
| dc.subject.lcsh | Chemoautotrophic bacteria | en |
| dc.subject.lcsh | Hot springs | en |
| dc.subject.lcsh | Carbon | en |
| dc.title | Inorganic carbon fixation and trophic interactions in high-temperature geothermal springs of Yellowstone National Park, WY, USA | en |
| dc.type | Dissertation | en |
| mus.relation.department | Land Resources & Environmental Sciences. | en_US |
| thesis.catalog.ckey | 2898822 | en |
| thesis.degree.committeemembers | Members, Graduate Committee: Ross Carlson; Michael Franklin; Margaret Romine. | en |
| thesis.degree.department | Land Resources & Environmental Sciences. | en |
| thesis.degree.genre | Dissertation | en |
| thesis.degree.name | PhD | en |
| thesis.format.extentfirstpage | 1 | en |
| thesis.format.extentlastpage | 146 | en |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- JenningsR0815-Suppl1.xlsx
- Size:
- 346.95 KB
- Format:
- Microsoft Excel XML
- Description:
- View Geoarchaeota EFM model files
Loading...
- Name:
- JenningsR0815-Suppl2.xlsx
- Size:
- 289.32 KB
- Format:
- Microsoft Excel XML
- Description:
- View myellowstonensis EFM model files
