Blue-light induced accumulation of reactive oxygen species is a consequence of the Drosophila cryptochrome photocycle

dc.contributor.authorArthaut, Louis-David
dc.contributor.authorJourdan, Nathalie
dc.contributor.authorMteyrek, Ali
dc.contributor.authorProcopio, Maria
dc.contributor.authorEl-Esawi, Mohamed
dc.contributor.authord'Harlingue, Alain
dc.contributor.authorBouchet, Pierre-Etienne
dc.contributor.authorWitczak, Jacques
dc.contributor.authorRitz, Thorsten
dc.contributor.authorKlarsfeld, Andre
dc.contributor.authorBirman, Serge
dc.contributor.authorUsselman, Robert J.
dc.contributor.authorHoecker, Ute
dc.contributor.authorMartino, Carlos F.
dc.contributor.authorAhmad, Margaret
dc.date.accessioned2017-08-23T21:01:05Z
dc.date.available2017-08-23T21:01:05Z
dc.date.issued2017-03
dc.description.abstractCryptochromes are evolutionarily conserved blue-light absorbing flavoproteins which participate in many important cellular processes including in entrainment of the circadian clock in plants, Drosophila and humans. Drosophila melanogaster cryptochrome (DmCry) absorbs light through a flavin (FAD) cofactor that undergoes photoreduction to the anionic radical (FAD[bullet]-) redox state both in vitro and in vivo. However, recent efforts to link this photoconversion to the initiation of a biological response have remained controversial. Here, we show by kinetic modeling of the DmCry photocycle that the fluence dependence, quantum yield, and half-life of flavin redox state interconversion are consistent with the anionic radical (FAD[bullet]-) as the signaling state in vivo. We show by fluorescence detection techniques that illumination of purified DmCry results in enzymatic conversion of molecular oxygen (O2) to reactive oxygen species (ROS). We extend these observations in living cells to demonstrate transient formation of superoxide (O2[bullet]-), and accumulation of hydrogen peroxide (H2O2) in the nucleus of insect cell cultures upon DmCry illumination. These results define the kinetic parameters of the Drosophila cryptochrome photocycle and support light-driven electron transfer to the flavin in DmCry signaling. They furthermore raise the intriguing possibility that light-dependent formation of ROS as a byproduct of the cryptochrome photocycle may contribute to its signaling role.en_US
dc.identifier.citationArthaut, Louis-David, Nathalie Jourdan, Ali Mteyrek, Maria Procopio, Mohamed El-Esawi, Alain d'Harlingue, Pierre-Etienne Bouchet, Jacques Witczak, Thorsten Ritz, Andre Klarsfeld, Serge Birman, Robert J. Usselman, Ute Hoecker, Carlos F. Martino, and Margaret Ahmad. "Blue-light induced accumulation of reactive oxygen species is a consequence of the Drosophila cryptochrome photocycle." PLoS One 12, no. 3 (March 2017). DOI: 10.1371/journal.pone.0171836.en_US
dc.identifier.issn1932-6203
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/13576
dc.rightsCC BY 4.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcodeen_US
dc.titleBlue-light induced accumulation of reactive oxygen species is a consequence of the Drosophila cryptochrome photocycleen_US
dc.typeArticleen_US
mus.citation.issue3en_US
mus.citation.journaltitlePLoS Oneen_US
mus.citation.volume12en_US
mus.data.thumbpage10en_US
mus.identifier.categoryChemical & Material Sciencesen_US
mus.identifier.doi10.1371/journal.pone.0171836en_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentChemistry & Biochemistry.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Usselman_PLOSone_2017.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format
Description:
Blue-light induced accumulation of reactive oxygen species is a consequence of the Drosophila cryptochrome photocycle (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.