Change in terrestrial ecosystem water-use efficiency over the last three decades
dc.contributor.author | Huang, Mengtian | |
dc.contributor.author | Piao, Shilong | |
dc.contributor.author | Sun, Yan | |
dc.contributor.author | Ciais, Philippe | |
dc.contributor.author | Cheng, Lei | |
dc.contributor.author | Mao, Jiafu | |
dc.contributor.author | Poulter, Benjamin | |
dc.date.accessioned | 2015-10-30T18:28:14Z | |
dc.date.available | 2015-10-30T18:28:14Z | |
dc.date.issued | 2015-03 | |
dc.description.abstract | Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem-scale water-use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data-driven models derived from satellite observations and process-oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m−2 mm−1 yr−1 under the single effect of rising CO2 (‘CO2’), climate change (‘CLIM’) and nitrogen deposition (‘NDEP’), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE-CO2 shows global increases, (ii) EWUE-CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE-NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data-driven MTE model, however, shows a slight decline of EWUE during the same period (−0.0005 g C m−2 mm−1 yr−1), which differs from process-model (0.0064 g C m−2 mm−1 yr−1) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO2 reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data-driven model and the process-oriented models across different ecosystems. Change in water-use efficiency defined from transpiration-based WUEt (GPP/TR) and inherent water-use efficiency (IWUEt, GPP×VPD/TR) in response to rising CO2, climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon–water interactions over terrestrial ecosystems under global change. | en_US |
dc.description.sponsorship | National Natural Science Foundation of China (41125004); Chinese Ministry of Environmental Protection Grant (201209031); the 111 Project (B14001);US Department of Energy (DOE), Office of Science, Biological, + Environmental Research; DOE DE-AC05-00OR22725 | en_US |
dc.identifier.citation | Huang, Mengtian, Shilong Piao, Yan Sun, Philippe Ciais, Lei Cheng, Jiafu Mao, and Ben Poulter. "Change in terrestrial ecosystem water-use efficiency over the last three decades." Global Change Biology 21, no. 6: 2366-2378. DOI:https://dx.doi.org/10.1111/gcb.12873. | en_US |
dc.identifier.issn | 1354-1013 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/9357 | |
dc.title | Change in terrestrial ecosystem water-use efficiency over the last three decades | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 2366 | en_US |
mus.citation.extentlastpage | 2378 | en_US |
mus.citation.issue | 6 | en_US |
mus.citation.journaltitle | Global Change Biology | en_US |
mus.citation.volume | 21 | en_US |
mus.contributor.orcid | Poulter, Benjamin|0000-0002-9493-8600 | en_US |
mus.data.thumbpage | 7 | en_US |
mus.identifier.category | Life Sciences & Earth Sciences | en_US |
mus.identifier.doi | 10.1111/gcb.12873 | en_US |
mus.relation.college | College of Letters & Science | en_US |
mus.relation.department | Ecology. | en_US |
mus.relation.researchgroup | Montana Institute on Ecosystems. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- Poulter_Huang_et_al_GCB_2015_A1b.pdf
- Size:
- 1.29 MB
- Format:
- Adobe Portable Document Format
- Description:
- Change in terrestrial ecosystem water-use efficiency over the last three decades (PDF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 826 B
- Format:
- Item-specific license agreed upon to submission
- Description: