Differential Incorporation of Bacteria, Organic Matter, and Inorganic Ions Into Lake Ice During Ice Formation
dc.contributor.author | Santibanez, Pamela A. | |
dc.contributor.author | Michaud, Alexander B. | |
dc.contributor.author | Vick-Majors, Trista J. | |
dc.contributor.author | D'Andrilli, Juliana | |
dc.contributor.author | Hand, Kevin P. | |
dc.contributor.author | Priscu, John C. | |
dc.date.accessioned | 2019-08-26T17:42:12Z | |
dc.date.available | 2019-08-26T17:42:12Z | |
dc.date.issued | 2019-03 | |
dc.description.abstract | The segregation of bacteria, inorganic solutes, and total organic carbon between liquid water and ice during winter ice formation on lakes can significantly influence the concentration and survival of microorganisms in icy systems and their roles in biogeochemical processes. Our study quantifies the distributions of bacteria and solutes between liquid and solid water phases during progressive freezing. We simulated lake ice formation in mesocosm experiments using water from perennially (Antarctica) and seasonally (Alaska and Montana, United States) ice-covered lakes. We then computed concentration factors and effective segregation coefficients, which are parameters describing the incorporation of bacteria and solutes into ice. Experimental results revealed that, contrary to major ions, bacteria were readily incorporated into ice and did not concentrate in the liquid phase. The organic matter incorporated into the ice was labile, amino acid-like material, differing from the humic-like compounds that remained in the liquid phase. Results from a control mesocosm experiment (dead bacterial cells) indicated that viability of bacterial cells did not influence the incorporation of free bacterial cells into ice, but did have a role in the formation and incorporation of bacterial aggregates. Together, these findings demonstrate that bacteria, unlike other solutes, were preferentially incorporated into lake ice during our freezing experiments, a process controlled mainly by the initial solute concentration of the liquid water source, regardless of cell viability. | en_US |
dc.identifier.citation | Santibanez, Pamela A., Alexander B. Michaud, Trista Vick-Majors, Juliana D\'Andrilli, Kevin P. Hand, and John C. Priscu. "Differential Incorporation of Bacteria, Organic Matter, and Inorganic Ions Into Lake Ice During Ice Formation." Journal of Geophysical Research 124, no. 3 (March 2019): 585-600. DOI:10.1029/2018JG004825. | en_US |
dc.identifier.issn | 2169-8953 | |
dc.identifier.uri | https://scholarworks.montana.edu/handle/1/15639 | |
dc.rights | This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). | en_US |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en_US |
dc.title | Differential Incorporation of Bacteria, Organic Matter, and Inorganic Ions Into Lake Ice During Ice Formation | en_US |
dc.type | Article | en_US |
mus.citation.extentfirstpage | 585 | en_US |
mus.citation.extentlastpage | 600 | en_US |
mus.citation.issue | 3 | en_US |
mus.citation.journaltitle | Journal of Geophysical Research | en_US |
mus.citation.volume | 124 | en_US |
mus.contributor.orcid | Vick-Majors, Trista J.|0000-0002-6868-4010 | en_US |
mus.data.thumbpage | 8 | en_US |
mus.identifier.doi | 10.1029/2018JG004825 | en_US |
mus.relation.college | College of Agriculture | en_US |
mus.relation.department | Land Resources & Environmental Sciences. | en_US |
mus.relation.university | Montana State University - Bozeman | en_US |
Files
Original bundle
1 - 1 of 1
- Name:
- PRiscu_JGRES_2019.pdf
- Size:
- 3.44 MB
- Format:
- Adobe Portable Document Format
- Description:
- Differential Incorporation of Bacteria, Organic Matter, and Inorganic Ions Into Lake Ice During Ice Formation (PDF)
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 826 B
- Format:
- Item-specific license agreed upon to submission
- Description: