Predicting High-Codimension Critical Transitions In Dynamical Systems Using Active Learning

dc.contributor.authorSpendlove, Kelly T.
dc.contributor.authorBerwald, Jesse
dc.contributor.authorGedeon, Tomas
dc.date.accessioned2016-09-09T15:17:02Z
dc.date.available2016-09-09T15:17:02Z
dc.date.issued2013-05
dc.description.abstractComplex dynamical systems, from those appearing in physiology and ecology to Earth system modelling, often experience critical transitions in their behaviour due to potentially minute changes in their parameters. While the focus of much recent work, predicting such bifurcations is still notoriously difficult. We propose an active learning approach to the classification of parameter space of dynamical systems for which the codimension of bifurcations is high. Using elementary notions regarding the dynamics, in combination with the nearest-neighbour algorithm and Conley index theory to classify the dynamics at a predefined scale, we are able to predict with high accuracy the boundaries between regions in parameter space that produce critical transitions.en_US
dc.identifier.citationK. Spendlove, J. Berwald and T. Gedeon, “Predicting High-Codimension Critical Transitions In Dynamical Systems Using Active Learning”, Mathematical and Computer Modelling of Dynamical Systems, 19(6), 557-574, (2013), DOI:10.1080/13873954.2013.801866.en_US
dc.identifier.issn1387-3954
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/10008
dc.titlePredicting High-Codimension Critical Transitions In Dynamical Systems Using Active Learningen_US
dc.typeArticleen_US
mus.citation.extentfirstpage557en_US
mus.citation.extentlastpage574en_US
mus.citation.issue6en_US
mus.citation.journaltitleMathematical and Computer Modelling of Dynamical Systemsen_US
mus.citation.volume19en_US
mus.contributor.orcidGedeon, Tomas|0000-0001-5555-6741en_US
mus.data.thumbpage11en_US
mus.identifier.categoryPhysics & Mathematicsen_US
mus.identifier.doi10.1080/13873954.2013.801866en_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentMathematical Sciencesen_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gedeon_MCMDS_2013_A1b.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description:
Predicting High-Codimension Critical Transitions In Dynamical Systems Using Active Learning (PDF)

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description: