Using machine learning to predict catastrophes in dynamical systems

dc.contributor.authorBerwald, Jesse
dc.contributor.authorGedeon, Tomas
dc.contributor.authorSheppard, John W.
dc.date.accessioned2016-01-08T17:41:32Z
dc.date.available2016-01-08T17:41:32Z
dc.date.issued2012-03
dc.description.abstractNonlinear dynamical systems, which include models of the Earth’s climate, financial markets and complex ecosystems, often undergo abrupt transitions that lead to radically different behavior. The ability to predict such qualitative and potentially disruptive changes is an important problem with far-reaching implications. Even with robust mathematical models, predicting such critical transitions prior to their occurrence is extremely difficult. In this work, we propose a machine learning method to study the parameter space of a complex system, where the dynamics is coarsely characterized using topological invariants. We show that by using a nearest neighbor algorithm to sample the parameter space in a specific manner, we are able to predict with high accuracy the locations of critical transitions in parameter space.en_US
dc.identifier.citationJ. Berwald, T. Gedeon and J. Sheppard, “Using machine learning to predict catastrophes in dynamical systems”, Journal Computational and Applied Mathematics, 236(9), (2012), pp. 2235-2245. http://dx.doi.org/10.1016/j.cam.2011.11.006en_US
dc.identifier.issn0377-0427
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/9481
dc.rightsCC BY-NC-ND 3.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcodeen_US
dc.titleUsing machine learning to predict catastrophes in dynamical systemsen_US
dc.typeArticleen_US
mus.citation.extentfirstpage2235en_US
mus.citation.extentlastpage2245en_US
mus.citation.issue9en_US
mus.citation.journaltitleJournal Computational and Applied Mathematicsen_US
mus.citation.volume236en_US
mus.contributor.orcidGedeon, Tomas|0000-0001-5555-6741en_US
mus.data.thumbpage8en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.categoryPhysics & Mathematicsen_US
mus.identifier.doi10.1016/j.cam.2011.11.006en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentComputer Science.en_US
mus.relation.departmentMathematical Sciences.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Gedeon_JCM_2012_A1b.pdf
Size:
839.86 KB
Format:
Adobe Portable Document Format
Description:
Using machine learning to predict catastrophes in dynamical systems (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.