Functional genomics analysis identifies loss of HNF1B function as a cause of Mayer–Rokitansky–Küster–Hauser syndrome

dc.contributor.authorThomson, Ella
dc.contributor.authorTran, Minh
dc.contributor.authorRobevska, Gorjana
dc.contributor.authorAyers, Katie
dc.contributor.authorvan der Bergen, Jocelyn
dc.contributor.authorBhaskaran, Prarthna Gopalakrishnan
dc.contributor.authorHaan, Peter
dc.contributor.authorCereghini, Silvia
dc.contributor.authorVash-Margita, Alla
dc.contributor.authorMargetts, Miranda
dc.contributor.authorHensley, Alison
dc.contributor.authorNguyen, Quan
dc.contributor.authorSinclair, Andrew
dc.contributor.authorKoopman, Peter
dc.contributor.authorPelosi, Emanuele
dc.date.accessioned2023-02-13T18:30:08Z
dc.date.available2023-02-13T18:30:08Z
dc.date.issued2022
dc.descriptionThis is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.comen_US
dc.description.abstractMayer–Rokitansky–Küster–Hauser (MRKH) syndrome is a congenital condition characterized by aplasia or hypoplasia of the uterus and vagina in women with a 46,XX karyotype. This condition can occur as type I when isolated or as type II when associated with extragenital anomalies including kidney and skeletal abnormalities. The genetic basis of MRKH syndrome remains unexplained and several candidate genes have been proposed to play a role in its etiology, including HNF1B, LHX1 and WNT4. Here, we conducted a microarray analysis of 13 women affected by MRKH syndrome, resulting in the identification of chromosomal changes, including the deletion at 17q12, which contains both HNF1B and LHX1. We focused on HNF1B for further investigation due to its known association with, but unknown etiological role in, MRKH syndrome. We ablated Hnf1b specifically in the epithelium of the Müllerian ducts in mice and found that this caused hypoplastic development of the uterus, as well as kidney anomalies, closely mirroring the MRKH type II phenotype. Using single-cell RNA sequencing of uterine tissue in the Hnf1b-ablated embryos, we analyzed the molecules and pathways downstream of Hnf1b, revealing a dysregulation of processes associated with cell proliferation, migration and differentiation. Thus, we establish that loss of Hnf1b function leads to an MRKH phenotype and generate the first mouse model of MRKH syndrome type II. Our results support the investigation of HNF1B in clinical genetic settings of MRKH syndrome and shed new light on the molecular mechanisms underlying this poorly understood condition in women’s reproductive health.en_US
dc.identifier.citationElla Thomson, Minh Tran, Gorjana Robevska, Katie Ayers, Jocelyn van der Bergen, Prarthna Gopalakrishnan Bhaskaran, Eric Haan, Silvia Cereghini, Alla Vash-Margita, Miranda Margetts, Alison Hensley, Quan Nguyen, Andrew Sinclair, Peter Koopman, Emanuele Pelosi, Functional genomics analysis identifies loss of HNF1B function as a cause of Mayer–Rokitansky–Küster–Hauser syndrome, Human Molecular Genetics, 2022;, ddac262, https://doi.org/10.1093/hmg/ddac262en_US
dc.identifier.issn1460-2083
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/17694
dc.language.isoen_USen_US
dc.publisherOxford University Pressen_US
dc.rightscc-by-ncen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.subjectfunctional genomicsen_US
dc.subjectgenomics analysisen_US
dc.subjectHNF1B functionen_US
dc.subjectMayer–Rokitansky–Küster–Hauser syndromeen_US
dc.titleFunctional genomics analysis identifies loss of HNF1B function as a cause of Mayer–Rokitansky–Küster–Hauser syndromeen_US
dc.typeArticleen_US
mus.citation.extentfirstpage1en_US
mus.citation.extentlastpage16en_US
mus.citation.journaltitleHuman Molecular Geneticsen_US
mus.identifier.doi10.1093/hmg/ddac262en_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.departmentLand Resources & Environmental Sciences.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
thomson-genomics-2022.pdf
Size:
2.24 MB
Format:
Adobe Portable Document Format
Description:
MRKH Syndrome

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.