Scholarly Work - Physics
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/3458
Browse
3 results
Search Results
Item The Imprint of Clump Formation at High Redshift. II. The Chemistry of the Bulge(American Astronomical Society, 2023-04) Debattista, Victor P.; Liddicott, David J.; Gonzalez, Oscar A.; Beraldo e Silva, Leandro; Amarante, João A. S.; Lazar, Ilin; Zoccali, Manuela; Valenti, Elena; Fisher, Deanne B.; Khachaturyants, Tigran; Nidever, David L.; Quinn, Thomas R.; Du, Min; Kassin, SusanIn Paper I, we showed that clumps in high-redshift galaxies, having a high star formation rate density (ΣSFR), produce disks with two tracks in the [Fe/H]–[α/Fe] chemical space, similar to that of the Milky Way's (MW's) thin+thick disks. Here we investigate the effect of clumps on the bulge's chemistry. The chemistry of the MW's bulge is comprised of a single track with two density peaks separated by a trough. We show that the bulge chemistry of an N-body + smoothed particle hydrodynamics clumpy simulation also has a single track. Star formation within the bulge is itself in the high-ΣSFR clumpy mode, which ensures that the bulge's chemical track follows that of the thick disk at low [Fe/H] and then extends to high [Fe/H], where it peaks. The peak at low metallicity instead is comprised of a mixture of in situ stars and stars accreted via clumps. As a result, the trough between the peaks occurs at the end of the thick disk track. We find that the high-metallicity peak dominates near the mid-plane and declines in relative importance with height, as in the MW. The bulge is already rapidly rotating by the end of the clump epoch, with higher rotation at low [α/Fe]. Thus clumpy star formation is able to simultaneously explain the chemodynamic trends of the MW's bulge, thin+thick disks, and the splash.Item The Recent LMC–SMC Collision: Timing and Impact Parameter Constraints from Comparison of Gaia LMC Disk Kinematics and N-body Simulations(American Astronomical Society, 2022-03) Choi, Yumi; Olsen, Knut A. G.; Besla, Gurtina; Van Der Marel, Roeland P.; Zivick, Paul; Kallivayalil, Nitya; Nidever, David L.We present analysis of the proper-motion (PM) field of the red clump stars in the Large Magellanic Cloud (LMC) disk using the Gaia Early Data Release 3 catalog. Using a kinematic model based on old stars with 3D velocity measurements, we construct the residual PM field by subtracting the center-of-mass motion and internal rotation motion components. The residual PM field reveals asymmetric patterns, including larger residual PMs in the southern disk. Comparisons of the observed residual PM field with those of five numerical simulations of an LMC analog that is subject to the tidal fields of the Milky Way and the Small Magellanic Cloud (SMC) show that the present-day LMC is not in dynamical equilibrium. We find that both the observed level of disk heating (PM residual rms of 0.057 ± 0.002 mas yr−1) and kinematic asymmetry are not reproduced by Milky Way tides or if the SMC impact parameter is larger than the size of the LMC disk. This measured level of disk heating provides a novel and important method to validate numerical simulations of the LMC–SMC interaction history. Our results alone put constraints on an impact parameter ≲10 kpc and impact timing <250 Myr. When adopting the impact timing constraint of ∼140–160 Myr ago from previous studies, our results suggest that the most recent SMC encounter must have occurred with an impact parameter of ∼5 kpc. We also find consistent radial trends in the kinematically and geometrically derived disk inclination and line-of-node position angles, indicating a common origin.Item Identifying Sagittarius Stream Stars by Their APOGEE Chemical Abundance Signatures(2019-02) Hasselquist, Sten; Carlin, Jeffrey L.; Holtzman, Jon A.; Shetrone, Matthew; Hayes, Christian R.; Cunha, Katia; Smith, Verne; Beaton, Rachael L.; Sobeck, Jennifer; Allende Prieto, Carlos; Majewski, Steven R.; Anguiano, Borja; Bizyaev, Dmitry; Garcia-Hernandez, D. A.; Lane, Richard R.; Pan, Kaike; Nidever, David L.; Fernandez-Trincado, Jose G.; Wilson, John C.; Zamora, OlgaThe SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey provides precise chemical abundances of 18 chemical elements for similar to 176,000 red giant stars distributed over much of the Milky Way Galaxy (MW), and includes observations of the core of the Sagittarius dwarf spheroidal galaxy (Sgr). The APOGEE chemical abundance patterns of Sgr have revealed that it is chemically distinct from the MW in most chemical elements. We employ a k-means clustering algorithm to six-dimensional chemical space defined by [(C+N)/Fe], [O/Fe], [Mg/Fe], [Al/Fe], [Mn/Fe], and [Ni/Fe] to identify 62 MW stars in the APOGEE sample that have Sgr-like chemical abundances. Of the 62 stars, 35 have Gaia kinematics and positions consistent with those predicted by N-body simulations of the Sgr stream, and are likely stars that have been stripped from Sgr during the last two pericenter passages (<2 Gyr ago). Another 20 of the 62 stars exhibit chemical abundances indistinguishable from the Sgr stream stars, but are on highly eccentric orbits with median r(apo) similar to 25 kpc. These stars are likely the "accreted" halo population thought to be the result of a separate merger with the MW 8-11 Gyr ago. We also find one hypervelocity star candidate. We conclude that Sgr was enriched to [Fe/H] similar to -0.2 before its most recent pericenter passage. If the "accreted halo" population is from one major accretion event, then this progenitor galaxy was enriched to at least [Fe/H] similar to -0.6, and had a similar star formation history to Sgr before merging.