Scholarly Work - Physics
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/3458
Browse
10 results
Search Results
Item Tracing field lines that are reconnecting, or expanding, or both(Frontiers Media SA, 2024-07) Qiu, JiongThe explosive release of energy in the solar atmosphere is driven magnetically, but the mechanisms that trigger the onset of the eruption remain controversial. In the case of flares and coronal mass ejections (CMEs), ideal or non-ideal instabilities usually occur in the corona, but it is difficult to obtain direct observations and diagnostics there. To overcome this difficulty, we analyze observational signatures in the upper chromosphere or transition region, particularly brightening and dimming at the base of coronal magnetic structures. In this paper, we examine the time evolution of spatially resolved light curves in two eruptive flares and identify a variety of tempo-spatial sequences of brightening and dimming, such as dimming followed by brightening and dimming preceded by brightening. These brightening–dimming sequences are indicative of the configuration of energy release in the form of plasma heating or bulk motion. We demonstrate the potential of using these analyses to diagnose the properties of magnetic reconnection and plasma expansion in the corona during the early stages of the eruption.Item Tracing field lines that are reconnecting, or expanding, or both(Frontiers Media SA, 2024-07) Qiu, JiongThe explosive release of energy in the solar atmosphere is driven magnetically, but the mechanisms that trigger the onset of the eruption remain controversial. In the case of flares and coronal mass ejections (CMEs), ideal or non-ideal instabilities usually occur in the corona, but it is difficult to obtain direct observations and diagnostics there. To overcome this difficulty, we analyze observational signatures in the upper chromosphere or transition region, particularly brightening and dimming at the base of coronal magnetic structures. In this paper, we examine the time evolution of spatially resolved light curves in two eruptive flares and identify a variety of tempo-spatial sequences of brightening and dimming, such as dimming followed by brightening and dimming preceded by brightening. These brightening–dimming sequences are indicative of the configuration of energy release in the form of plasma heating or bulk motion. We demonstrate the potential of using these analyses to diagnose the properties of magnetic reconnection and plasma expansion in the corona during the early stages of the eruption.Item Structure of the Plasma near the Heliospheric Current Sheet as Seen by WISPR/Parker Solar Probe from inside the Streamer Belt(IOP Publising, 2023-05) Liewer, Paulett C.; Vourlidas, Angelos; Stenborg, Guillermo; Howard, Russell A.; Qiu, Jiong; Penteado, Paulo; Panasenco, Olga; Braga, Carlos R.Parker Solar Probe (PSP) crossed the heliospheric current sheet (HCS) near the perihelion on encounters E8 and E11, enabling the Wide-field Imager for Solar Probe (WISPR) to image the streamer belt plasma in high resolution while flying through it. With perihelia of 16 R⊙ and 13 R⊙ for E8 and E11, respectively, WISPR images enable investigation of the structure of density encasing the HCS at much higher resolution than reported previously. As PSP flies closer to the Sun, fine-scale structures are resolved within the coronal rays of the streamer belt. Near the HCS, WISPR observes a fan of rays of various sizes and brightnesses, indicating large density variations in the HCS plasma sheet transverse to the radial direction. Near the perihelion, when PSP's speed exceeds the solar corotation speed, some rays exhibit large changes in apparent latitude as the HCS is encountered, and rays pass over and under the spacecraft. The multiple viewpoints provided during the HCS crossing enable us to extract the coordinates of a few rays in a heliocentric frame. The rays were found to lie near the HCS from a PFSS model. We compare their locations to the location of the streamers as seen in synoptic maps from the Large Angle and Spectrometric Coronagraph, and find that the rays generally fall within the bright streamer bands seen in these maps, which confirms that they are features of the streamer belt plasma. We speculate that the density variations in the helmet streamer plasma result from continuous interchange reconnection along the coronal hole boundaries.Item Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection(2017-10) Takahashi, Takuya; Qiu, Jiong; Shibata, KazunariWe propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.Item Spectroscopic Observations of Magnetic Reconnection and Chromospheric Evaporation in an X-shaped Solar Flare(2017-10) Li, Ying; Kelly, Madie; Ding, M. D.; Qiu, Jiong; Zhu, X. S.; Gan, W. Q.We present observations of distinct UV spectral properties at different locations during an atypical X-shaped flare (SOL2014-11-09T15:32) observed by the Interface Region Imaging Spectrograph (IRIS). In this flare, four chromospheric ribbons appear and converge at an X-point where a separator is anchored. Above the X-point, two sets of non-coplanar coronal loops approach laterally and reconnect at the separator. The IRIS. slit was located close to the X-point, cutting across some of the flare ribbons and loops. Near the location of the separator, the Si IV 1402.77 angstrom line exhibits significantly broadened line wings extending to 200 km s(-1) with an unshifted line core. These spectral features suggest the presence of bidirectional flows possibly related to the separator reconnection. While at the flare ribbons, the hot Fe XXI 1354.08 angstrom line shows blueshifts and the cool Si IV 1402.77 angstrom, C II 1335.71 angstrom, and Mg II 2803.52 angstrom lines show evident redshifts up to a velocity of 80 km s(-1), which are consistent with the scenario of chromospheric evaporation/condensation.Item Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare(2017-02) Li, Ying; Sun, X.; Ding, M. D.; Qiu, Jiong; Priest, E. R.Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.Item Coronal Holes and Open Magnetic Flux over Cycles 23 and 24(Springer, 2017) Lowder, Chris; Qiu, Jiong; Leamon, RobertAs the observational signature of the footprints of solar magnetic field lines open into the heliosphere, coronal holes provide a critical measure of the structure and evolution of these lines. Using a combination of Solar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT), Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), and Solar Terrestrial Relations Observatory/Extreme Ultraviolet Imager (STEREO/EUVI A/B) extreme ultraviolet (EUV) observations spanning 1996 – 2015 (nearly two solar cycles), coronal holes are automatically detected and characterized. Coronal hole area distributions show distinct behavior in latitude, defining the domain of polar and low-latitude coronal holes. The northern and southern polar regions show a clear asymmetry, with a lag between hemispheres in the appearance and disappearance of polar coronal holes.Item Long Duration Flare Emission: Impulsive Heating or Gradual Heating?(2016-03) Qiu, Jiong; Longcope, Dana W.Flare emissions in X-ray and EUV wavelengths have previously been modeled as the plasma response to impulsive heating from magnetic reconnection. Some flares exhibit gradually evolving X-ray and EUV light curves, which are believed to result from superposition of an extended sequence of impulsive heating events occurring in different adjacent loops or even unresolved threads within each loop. In this paper, we apply this approach to a long duration two-ribbon flare SOL2011-09-13T22 observed by the Atmosphere Imaging Assembly (AIA). We find that to reconcile with observed signatures of flare emission in multiple EUV wavelengths, each thread should be heated in two phases, an intense impulsive heating followed by a gradual, low-rate heating tail that is attenuated over 20–30 minutes. Each AIA resolved single loop may be composed of several such threads. The two-phase heating scenario is supported by modeling with both a zero-dimensional and a 1D hydrodynamic code. We discuss viable physical mechanisms for the two-phase heating in a post-reconnection thread.Item Magnetic field line lengths inside interplanetary magnetic flux ropes(2015-07) Hu, Qiang; Qiu, Jiong; Krucker, SamWe report on the detailed and systematic study of field line twist and length distributions within magnetic flux ropes embedded in interplanetary coronal mass ejections (ICMEs). The Grad-Shafranov reconstruction method is utilized together with a constant-twist nonlinear force-free (Gold-Hoyle) flux rope model to reveal the close relation between the field line twist and length in cylindrical flux ropes, based on in situ Wind spacecraft measurements. We show that the field line twist distributions within interplanetary flux ropes are inconsistent with the Lundquist model. In particular, we utilize the unique measurements of magnetic field line lengths within selected ICME events as provided by Kahler et al. () based on energetic electron burst observations at 1 AU and the associated type III radio emissions detected by the Wind spacecraft. These direct measurements are compared with our model calculations to help assess the flux rope interpretation of the embedded magnetic structures. By using the different flux rope models, we show that the in situ direct measurements of field line lengths are consistent with a flux rope structure with spiral field lines of constant and low twist, largely different from that of the Lundquist model, especially for relatively large-scale flux ropes.Item Measurements of EUV Coronal Holes and Open Magnetic Flux(IOP Publishing, 2014-02) Lowder, Chris; Qiu, Jiong; Leamon, Robert; Liu, Y.Coronal holes are regions on the Sun’s surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extremeultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2–5)×1022 Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010–2013 show coronal hole area coverage of 5%–10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2–4)×1022 Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA–EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.