Scholarly Work - Physics
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/3458
Browse
4 results
Search Results
Item Unveiling the purely young star formation history of the SMC’s northeastern shell from colour–magnitude diagram fitting(Oxford University Press, 2024-07) Sakowska, J.D.; Noël, Noëlia E. D.; Ruiz-Lara, T.; Gallart, Carme; Massana, Pol; Nidever, David L.; Cassisi, Santi; Correa-Amaro, Patricio; Choi, Yumi; Besla, Gurtina; Erkal, Denis; Martínez‐Delgado, David; Monelli, M.; Olsen, Knut; Stringfellow, Guy S.We obtain a quantitative star formation history (SFH) of a shell-like structure (‘shell’) located in the northeastern part of the Small Magellanic Cloud (SMC). We use the Survey of the MAgellanic Stellar History to derive colour–magnitude diagrams (CMDs), reaching below the oldest main-sequence turnoff, from which we compute the SFHs with CMD-fitting techniques. We present, for the first time, a novel technique that uses red clump (RC) stars from the CMDs to assess and account for the SMC’s line-of-sight depth effect present during the SFH derivation. We find that accounting for this effect recovers a more accurate SFH. We quantify an 7 kpc line-of-sight depth present in the CMDs, in good agreement with depth estimates from RC stars in the northeastern SMC. By isolating the stellar content of the northeastern shell and incorporating the line-of-sight depth into our calculations, we obtain an unprecedentedly detailed SFH. We find that the northeastern shell is primarily composed of stars younger than 500 Myr, with significant star formation enhancements around 250 and 450 Myr. These young stars are the main contributors to the shell’s structure. We show synchronicity between the northeastern shell’s SFH with the Large Magellanic Cloud’s (LMC) northern arm, which we attribute to the interaction history of the SMC with the LMC and the Milky Way (MW) over the past 500 Myr. Our results highlight the complex interplay of ram pressure stripping and the influence of the MW’s circumgalactic medium in shaping the SMC’s northeastern shell.Item JWST’s PEARLS: TN J1338–1942 – I. Extreme jet-triggered star formation in a z = 4.11 luminous radio galaxy(Oxford University Press, 2023-04) Duncan, Kenneth J; Windhorst, Rogier A; Koekemoer, Anton M; Röttgering, Huub J A; Cohen, Jansen; Summers, Jake; Tompkins, Scott; Hutchison, Taylor A; Conselice, Christopher J; Driver, Simon P; Yan, Haojing; Adams, Nathan J; Cheng, Cheng; Coe, Dan; Diego, Jose M; Dole, Hervé; Frye, Brenda; Gim, Hansung B; Grogin, Norman A; Holwerda, Benne W; Lim, Jeremy; Marshall, Madeline A; Nonino, Mario; Pirzkal, Nor; Robotham, Aaron; Ryan, Russell E; Willmer, Christopher N AWe present the first JWST observations of the z = 4.11 luminous radio galaxy TN J1338–1942, obtained as part of the ‘Prime Extragalactic Areas for Reionization and Lensing Science’ (‘PEARLS’) project. Our NIRCam observations, designed to probe the key rest-frame optical continuum and emission line features at this redshift, enable resolved spectral energy distribution modelling that incorporates both a range of stellar population assumptions and radiative shock models. With an estimated stellar mass of log10(M/M⊙) ∼ 10.9, TN J1338–1942 is confirmed to be one of the most massive galaxies known at this epoch. Our observations also reveal extremely high equivalent-width nebular emission coincident with the luminous AGN jets that is best fit by radiative shocks surrounded by extensive recent star formation. We estimate the total star-formation rate (SFR) could be as high as ∼1600M⊙yr−1 , with the SFR that we attribute to the jet induced burst conservatively ≳500M⊙yr−1 . The mass-weighted age of the star-formation, tmass < 4 Myr, is consistent with the likely age of the jets responsible for the triggered activity and significantly younger than that measured in the core of the host galaxy. The extreme scale of the potential jet-triggered star-formation activity indicates the potential importance of positive AGN feedback in the earliest stages of massive galaxy formation, with our observations also illustrating the extraordinary prospects for detailed studies of high-redshift galaxies with JWST.Item Multiwavelength scrutiny of X-ray sources in dwarf galaxies: ULXs versus AGNs(Oxford University Press, 2023-01) Thygesen, Erica; Plotkin, Richard M; Soria, Roberto; Reines, Amy E; Greene, Jenny E; Anderson, Gemma E; Baldassare, Vivienne F; Owens, Milo G; Urquhart, Ryan T; Gallo, Elena; Miller-Jones, James C A; Paul, Jeremiah D; Rollings, Alexandar POwing to their quiet evolutionary histories, nearby dwarf galaxies (stellar masses M⋆≲3×109M⊙) have the potential to teach us about the mechanism(s) that ‘seeded’ the growth of supermassive black holes, and also how the first stellar mass black holes formed and interacted with their environments. Here, we present high spatial resolution observations of three dwarf galaxies in the X-ray (Chandra), the optical/near-infrared (Hubble Space Telescope), and the radio (Karl G. Jansky Very Large Array). These three galaxies were previously identified as hosting candidate active galactic nuclei on the basis of lower resolution X-ray imaging. With our new observations, we find that X-ray sources in two galaxies (SDSS J121326.01+543631.6 and SDSS J122111.29+173819.1) are off-nuclear and lack corresponding radio emission, implying they are likely luminous X-ray binaries. The third galaxy (Mrk 1434) contains two X-ray sources (each with LX ≈ 1040 erg s−1) separated by 2.8 arcsec, has a low metallicity [12 + log(O/H) = 7.8], and emits nebular He ii λ4686 line emission. The northern source has spatially coincident point-like radio emission at 9.0 GHz and extended radio emission at 5.5 GHz. We discuss X-ray binary interpretations (where an ultraluminous X-ray source blows a ‘radio bubble’) and active galactic nucleus interpretations (where an ≈4×105M⊙ black hole launches a jet). In either case, we find that the He ii emission cannot be photoionized by the X-ray source, unless the source was ≈30–90 times more luminous several hundred years ago.Item Intermediate-mass black holes and the Fundamental Plane of black hole accretion(Oxford University Press, 2022-09) Gültekin, Kayhan; Nyland, Kristina; Gray, Nichole; Fehmer, Greg; Huang, Tianchi; Sparkman, Matthew; Reines, Amy E; Greene, Jenny E; Cackett, Edward M; Baldassare, VivienneWe present new 5 GHz Very Large Array observations of a sample of eight active intermediate-mass black holes with masses 104.9 M⊙ < M < 106.1 M⊙ found in galaxies with stellar masses M* < 3 × 109 M⊙. We detected five of the eight sources at high significance. Of the detections, four were consistent with a point source, and one (SDSS J095418.15+471725.1, with black hole mass M < 105 M⊙) clearly shows extended emission that has a jet morphology. Combining our new radio data with the black hole masses and literature X-ray measurements, we put the sources on the Fundamental Plane of black hole accretion. We find that the extent to which the sources agree with the Fundamental Plane depends on their star-forming/composite/active galactic nucleus (AGN) classification based on optical narrow emission-line ratios. The single star-forming source is inconsistent with the Fundamental Plane. The three composite sources are consistent, and three of the four AGN sources are inconsistent with the Fundamental Plane. We argue that this inconsistency is genuine and not a result of misattributing star formation to black hole activity. Instead, we identify the sources in our sample that have AGN-like optical emission-line ratios as not following the Fundamental Plane and thus caution the use of the Fundamental Plane to estimate masses without additional constraints, such as radio spectral index, radiative efficiency, or the Eddington fraction.