Scholarly Work - Chemistry & Biochemistry
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8714
Browse
2 results
Search Results
Item Oxidative Addition of (Hetero)aryl (Pseudo)halides at Palladium(0): Origin and Significance of Divergent Mechanisms(American Chemical Society, 2024-07) Kania, Matthew J.; Reyes, Albert; Neufeldt, Sharon R.Two limiting mechanisms are possible for oxidative addition of (hetero)aryl (pseudo)halides at Pd(0): a 3-centered concerted and a nucleophilic displacement mechanism. Until now, there has been little understanding about when each mechanism is relevant. Prior investigations to distinguish between these pathways were limited to a few specific combinations of the substrate and ligand. Here, we computationally evaluated over 180 transition structures for oxidative addition in order to determine mechanistic trends based on substrate, ligand(s), and coordination number. Natural abundance 13C kinetic isotope effects provide experimental results consistent with computational predictions. Key findings include that (1) differences in highest occupied molecular orbital (HOMO) symmetries dictate that, although 12e– PdL is strongly biased toward a 3-centered concerted mechanism, 14e– PdL2 often prefers a nucleophilic displacement mechanism; (2) ligand electronics and sterics, including ligand bite angle, influence the preferred mechanism of the reaction at PdL2; (3) phenyl triflate always reacts through a displacement mechanism regardless of the catalyst structure due to the stability of a triflate anion and the inability of oxygen to effectively donate electron density to Pd; and (4) the high reactivity of C–X bonds adjacent to nitrogen in pyridine substrates relates to stereoelectronic stabilization of a nucleophilic displacement transition state. This work has implications for controlling rate and selectivity in catalytic couplings, and we demonstrate application of the mechanistic insight toward chemodivergent cross-couplings of bromochloroheteroarenes.Item Solvent coordination to palladium can invert the selectivity of oxidative addition(Royal Society of Chemistry, 2022-01) Elias, Emily K; Rehbein, Steven M; Neufeldt, Sharon R.In the presence of the bulky monophosphine PtBu3, palladium usually prefers to react with Ar–Cl over Ar–OTf bonds. However, strongly coordinating solvents can bind to palladium, inducing a reversal of selectivity.