Scholarly Work - Indigenous Research Initiative

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/15852

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Detection of Pathogenic and Non-pathogenic Bacteria in Drinking Water and Associated Biofilms on the Crow Reservation, Montana, USA
    (2018-07) Richards, Crystal L.; Broadaway, Susan C.; Eggers, Margaret J.; Doyle, John T.; Pyle, Barry H.; Camper, Anne K.; Ford, Tim E.
    Private residences in rural areas with water systems that are not adequately regulated, monitored, and updated could have drinking water that poses a health risk. To investigate water quality on the Crow Reservation in Montana, water and biofilm samples were collected from 57 public buildings and private residences served by either treated municipal or individual groundwater well systems. Bacteriological quality was assessed including detection of fecal coliform bacteria and heterotrophic plate count (HPC) as well as three potentially pathogenic bacterial genera, Mycobacterium, Legionella, and Helicobacter. All three target genera were detected in drinking water systems on the Crow Reservation. Species detected included the opportunistic and frank pathogens Mycobacterium avium, Mycobacterium gordonae, Mycobacterium flavescens, Legionella pneumophila, and Helicobacter pylori. Additionally, there was an association between HPC bacteria and the presence of Mycobacterium and Legionella but not the presence of Helicobacter. This research has shown that groundwater and municipal drinking water systems on the Crow Reservation can harbor potential bacterial pathogens.
  • Thumbnail Image
    Item
    Challenges and Opportunities for Tribal Waters: Addressing Disparities in Safe Public Drinking Water on the Crow Reservation in Montana, US
    (2018-03) Doyle, John T.; Kindness, L.; Real Bird, James; Eggers, Margaret J.; Camper, Anne K.
    Disparities in access to safe public drinking water are increasingly being recognized as contributing to health disparities and environmental injustice for vulnerable communities in the United States. As the Co-Directors of the Apsaálooke Water and Wastewater Authority (AWWWA) for the Crow Tribe, with our academic partners, we present here the multiple and complex challenges we have addressed in improving and maintaining tribal water and wastewater infrastructure, including the identification of diverse funding sources for infrastructure construction, the need for many kinds of specialized expertise and long-term stability of project personnel, ratepayer difficulty in paying for services, an ongoing legacy of inadequate infrastructure planning, and lack of water quality research capacity. As a tribal entity, the AWWWA faces additional challenges, including the complex jurisdictional issues affecting all phases of our work, lack of authority to create water districts, and additional legal and regulatory gaps—especially with regards to environmental protection. Despite these obstacles, the AWWWA and Crow Tribe have successfully upgraded much of the local water and wastewater infrastructure. We find that ensuring safe public drinking water for tribal and other disadvantaged U.S. communities will require comprehensive, community-engaged approaches across a broad range of stakeholders to successfully address these complex legal, regulatory, policy, community capacity, and financial challenges.
  • Thumbnail Image
    Item
    Community-based participatory research in Indian country: Improving health through water quality research and awareness
    (2010-07) Cummins, C.; Doyle, John T.; Kindness, L.; Lefthand, M. J.; Bear Don't Walk, U. J.; Bends, Ada L.; Broadaway, Susan C.; Camper, Anne K.; Fitch, R.; Ford, Tim E.; Hamner, Steve; Morrison, A. R.; Richards, Crystal L.; Young, Sara L.; Eggers, Margaret J.
    Water has always been held in high respect by the Apsaalooke (Crow) people of Montana. Tribal members questioned the health of the rivers and well water because of visible water quality deterioration and potential connections to illnesses in the community. Community members initiated collaboration among local organizations, the tribe, and academic partners, resulting in genuine community-based participatory research. The article shares what we have learned as tribal members and researchers about working together to examine surface and groundwater contaminants, assess routes of exposure, and use our data to bring about improved health of our people and our waters.
  • Thumbnail Image
    Item
    Detection and source tracking of Escherichia coli, harboring intimin and Shiga toxin genes, isolated from the Little Bighorn River, Montana
    (2014-09) Hamner, Steve; Broadaway, Susan C.; Berg, Ethan; Stettner, Sean; Pyle, Barry H.; Big Man, N.; Old Elk, J.; Eggers, Margaret J.; Doyle, John T.; Kindness, L.; Good Luck, B.; Ford, Tim E.; Camper, Anne K.
    The Little Bighorn River flows through the Crow Indian Reservation in Montana. In 2008, Escherichia coli concentrations as high as 7,179 MPN/100 ml were detected in the river at the Crow Agency Water Treatment Plant intake site. During 2008, 2009, and 2012, 10 different serotypes of E. coli, including O157:H7, harboring both intimin and Shiga toxin genes were isolated from a popular swim site of the Little Bighorn River in Crow Agency. As part of a microbial source tracking study, E. coli strains were isolated from river samples as well as from manure collected from a large cattle feeding operation in the upper Little Bighorn River watershed; 23% of 167 isolates of E. coli obtained from the manure tested positive for the intimin gene. Among these manure isolates, 19 were identified as O156:H8, matching the serotype of an isolate collected from a river sampling site close to the cattle feeding area.
  • Thumbnail Image
    Item
    Potential health risks from uranium in home well water: An investigation by the Apsaalooke (Crow) tribal research group
    (2015-03) Eggers, Margaret J.; Moore-Nall, Anita L.; Doyle, John T.; Lefthand, M. J.; Young, Sara L.; Bends, Ada L.; Crow Environmental Health Steering Committee; Camper, Anne K.
    Exposure to uranium can damage kidneys, increase long term risks of various cancers, and cause developmental and reproductive effects. Historically, home well water in Montana has not been tested for uranium. Data for the Crow Reservation from the United States Geological Survey (USGS) National Uranium Resource Evaluation (NURE) database showed that water from 34 of 189 wells tested had uranium over the Environmental Protection Agency (EPA) Maximum Contaminant Level (MCL) of 30 μg/L for drinking water. Therefore the Crow Water Quality Project included uranium in its tests of home well water. Volunteers had their well water tested and completed a survey about their well water use. More than 2/3 of the 97 wells sampled had detectable uranium; 6.3% exceeded the MCL of 30 μg/L. Wells downgradient from the uranium-bearing formations in the mountains were at highest risk. About half of all Crow families rely on home wells; 80% of these families consume their well water. An explanation of test results; associated health risks and water treatment options were provided to participating homeowners. The project is a community-based participatory research initiative of Little Big Horn College; the Crow Tribe; the Apsaalooke Water and Wastewater Authority; the local Indian Health Service Hospital and other local stakeholders; with support from academic partners at Montana State University (MSU) Bozeman.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.