Scholarly Work - Indigenous Research Initiative
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/15852
Browse
2 results
Search Results
Item Structural controls and chemical characterization of brecciation and uranium vanadium mineralization in the northern Bighorn Basin(Montana State University - Bozeman, College of Letters & Science, 2016) Moore-Nall, Anita Louise; Chairperson, Graduate Committee: David R. Lageson; Margaret Eggers, John Doyle, Myra Lefthand, Sara Young, Ada Bends, Anne Camper and CEHSC were co-authors of the article, 'Potential health risks from uranium in home well water: an investigation by the Apsaalooke (Crow) Tribal Research Group' in the journal 'GeoSciences' which is contained within this thesis.; Ranalda Tsosie was a co-author of the article, 'Ree data support oil with a Permian phosphoria formation source as a source of metals for U and V mineralization in the northern Bighorn Basin' submitted to the journal 'Minerals' which is contained within this thesis.The goals of this research were to determine if the mode of mineralization and the geology of two abandoned uranium and vanadium mining districts that border the Crow Reservation might be a source for contaminants in the Bighorn River and a source of elevated uranium in home water wells on the Reservation. Surface and spring waters of the Crow Reservation have always been greatly respected by the Crow people, valued as a source of life and health and relied upon for drinking water. Upon learning that the Bighorn River has an EPA 303d impaired water listing due to elevated lead and mercury and that mercury has been detected in the fish from rivers of the Crow Reservation this study was implemented. Watersheds from both mining districts contribute to the Bighorn River that flows through the Crow Reservation. Initial research used the National Uranium Resource Evaluation database to analyze available geochemistry for the study areas using GIS. The data showed elevated concentrations of lead in drainages related to the mining areas. The data also showed elevated uranium in many of the surface waters and wells that were tested as a part of the study on the Crow Reservation. The author attended meetings and presented results of the National Uranium Resource Evaluation data analyses to the Crow Environmental Health Steering Committee. Thus, both uranium and lead were added to the list of elements that were being tested in home water wells as part of a community based participatory research project addressing many issues of water quality on the Crow Reservation. Results from home wells tested on the reservation did show elevated uranium. Rock samples were collected in the study areas and geochemically analyzed. The results of the analyses support a Permian Phosphoria Formation oil source of metals in the two mining districts. Structural data support fracturing accompanied by tectonic hydrothermal brecciation as a process that introduced oil and brines from the Bighorn Basin into the deposits where the uranium vanadium deposits later formed.Item The detection, characterization, and cultivation of nonculturable Helicobacter pylori(Montana State University - Bozeman, College of Letters & Science, 2010) Richards, Crystal Lynette; Chairperson, Graduate Committee: Anne Camper; Susan C. Broadaway, Margaret J. Eggers, Emily Colgate, John Doyle, Barry H. Pyle, Anne K. Camper, and Timothy E. Ford were co-authors of the article, 'Detection of Mycobacteria, Legionella, and Helicobacter in drinking water and associated biofilms on the Crow Reservation, Montana, USA' in the journal 'Applied and environmental microbiology' which is contained within this thesis.; Kerry Williamson, Timothy E. Ford, and Anne K. Camper were co-authors of the article, 'Multiple processes govern switch to nonculturable state in H. pylori' in the journal 'Journal of bacteriology' which is contained within this thesis.; Brittany J. Buchholz, Timothy E. Ford, Susan C. Broadaway, Barry H. Pyle, and Anne K. Camper were co-authors of the article, 'Optimizing the growth of stressed Helicobacter pylori' in the journal 'Journal of microbiological methods' which is contained within this thesis.Transmission of a bacterial pathogen from host to host is a complex process that may involve survival of the pathogen outside the host for considerable lengths of time. The bacterium Helicobacter pylori causes severe gastritis and gastric ulcers, and infection can increase the risk of stomach cancer. The main mode of transmission is believed to be the oral-oral route, however other routes of transmission such as drinking water have been implicated but have not been proven due to difficulty in culturing this organism. In this dissertation, the environmental transmission of H. pylori was investigated using several approaches. A primary objective of this study was to determine if H. pylori could be detected in an environmental reservoir readily consumed by humans, such as drinking water. H. pylori was detected by PCR but not culture in drinking water and biofilms that were obtained from groundwater and municipal systems. H. pylori contamination was sporadic and not associated with measured environmental factors, such as pH or temperature. Growth curve analysis of laboratory grown H. pylori showed that the cells exhibited a switch from a spiral to coccoid morphology as they aged or were exposed to stressful culture conditions. However, results showed that cell morphology was not indicative of culturability, with spiral forms dominant in early nonculturable samples. Microarray analysis of the transition to a nonculturable state showed that cells under oxygen stress quickly modified their transcriptional activity while the cells exposed to nutrient deprivation had nearly undetectable changes in transcriptional activities. Resuscitation of the stressed cells showed that type of stress and length of exposure affected regrowth of H. pylori. The oxygen stressed cells increased virulence factor transcription while nutrient deprived cells decreased transcription of the same factors. This observation led to the conclusion that oxygen stressed and nutrient deprived cells are metabolically active but react differently to in vitro culture conditions with starved cells likely undergoing nutrient shock. Collectively these data suggest that H. pylori can persist and are metabolically active under stressful conditions posed by the environmental mode of transmission.