Mathematical Sciences

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/48

Mathematical research at MSU is focused primarily on related topics in pure and applied mathematics. Research programs complement each other and are often applied to problems in science and engineering. Research in statistics encompasses a broad range of theoretical and applied topics. Because the statisticians are actively engaged in interdisciplinary work, much of the statistical research is directed toward practical problems. Mathematics education faculty are active in both qualitative and quantitative experimental research areas. These include teacher preparation, coaching and mentoring for in-service teachers, online learning and curriculum development.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Modeling Transport Regulation in Gene Regulatory Networks
    (Springer Science and Business Media LLC, 2022-07) Fox, Erika; Cummins, Bree; Duncan, William; Gedeon, Tomáš
    A gene regulatory network summarizes the interactions between a set of genes and regulatory gene products. These interactions include transcriptional regulation, protein activity regulation, and regulation of the transport of proteins between cellular compartments. DSGRN is a network modeling approach that builds on traditions of discrete-time Boolean models and continuous-time switching system models. When all interactions are transcriptional, DSGRN uses a combinatorial approximation to describe the entire range of dynamics that is compatible with network structure. Here we present an extension of the DGSRN approach to transport regulation across a boundary between compartments, such as a cellular membrane. We illustrate our approach by searching a model of the p53-Mdm2 network for the potential to admit two experimentally observed distinct stable periodic cycles.
  • Thumbnail Image
    Item
    Stability and Bifurcations of Equilibria in Networks with Piecewise Linear Interactions
    (World Scientific Pub Co Pte Lt, 2021-09) Duncan, William; Gedeon, Tomas
    In this paper, we study equilibria of differential equation models for networks. When interactions between nodes are taken to be piecewise constant, an efficient combinatorial analysis can be used to characterize the equilibria. When the piecewise constant functions are replaced with piecewise linear functions, the equilibria are preserved as long as the piecewise linear functions are sufficiently steep. Therefore the combinatorial analysis can be leveraged to understand a broader class of interactions. To better understand how broad this class is, we explicitly characterize how steep the piecewise linear functions must be for the correspondence between equilibria to hold. To do so, we analyze the steady state and Hopf bifurcations which cause a change in the number or stability of equilibria as slopes are decreased. Additionally, we show how to choose a subset of parameters so that the correspondence between equilibria holds for the smallest possible slopes when the remaining parameters are fixed.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.