College of Engineering
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27
The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.
Browse
989 results
Filters
Settings
Search Results
Item Proteomic and Transcriptomic Analyses Reveal Genes Upregulated by cis-Dichloroethene in Polaromonas sp. Strain JS666(American Society for Microbiology, 2009-06) Jennings, Laura; Chartrand, Michelle; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara; Spain, Jim C.; Gossett, James M.Polaromonas sp. strain JS666 is the only bacterial isolate capable of using cis-dichloroethene (cDCE) as a sole carbon and energy source. Studies of cDCE degradation in this novel organism are of interest because of potential bioremediation and biocatalysis applications. The primary cellular responses of JS666 to growth on cDCE were explored using proteomics and transcriptomics to identify the genes upregulated by cDCE. Two-dimensional gel electrophoresis revealed upregulation of genes annotated as encoding glutathione S-transferase, cyclohexanone monooxygenase, and haloacid dehalogenase. DNA microarray experiments confirmed the proteomics findings that the genes indicated above were among the most highly upregulated by cDCE. The upregulation of genes with antioxidant functions and the inhibition of cDCE degradation by elevated oxygen levels suggest that cDCE induces an oxidative stress response. Furthermore, the upregulation of a predicted ABC transporter and two sodium/solute symporters suggests that transport is important in cDCE degradation. The omics data were integrated with data from compound-specific isotope analysis (CSIA) and biochemical experiments to develop a hypothesis for cDCE degradation pathways in JS666. The CSIA results indicate that the measured isotope enrichment factors for aerobic cDCE degradation ranged from −17.4 to −22.4‰. Evidence suggests that cDCE degradation via monooxygenase-catalyzed epoxidation (C═C cleavage) may be only a minor degradation pathway under the conditions of these experiments and that the major degradation pathway involves carbon-chloride cleavage as the initial step, a novel mechanism. The results provide a significant step toward elucidation of cDCE degradation pathways and enhanced understanding of cDCE degradation in JS666.Item Radiometry and the Friis transmission equation(American Association of Physics Teachers, 2013) Shaw, JosephTo more effectively tailor courses involving antennas, wireless communications, optics, and applied electromagnetics to a mixed audience of engineering and physics students, the Friis transmission equation—which quantifies the power received in a free-space communication link—is developed from principles of optical radiometry and scalar diffraction. This approach places more emphasis on the physics and conceptual understanding of the Friis equation than is provided by the traditional derivation based on antenna impedance. Specifically, it shows that the wavelength-squared dependence can be attributed to diffraction at the antenna aperture and illustrates the important difference between the throughput (product of area and solid angle) of a single antenna or telescope and the throughput of a transmitter-receiver pair.Item Intercity Bus Service Funding and Assessment Methodology(University of South Florida Libraries, 2012-09) Ye, Zhirui; Kack, David; Chaudhari, Jaydeep; Ewan, LeviThe Federal Transit Administration (FTA)’s 5311(f) program requires that 15 percent of 5311 program funds given to a state be used to develop and support intercity bus (ICB) service. This 15 percent can be waived if the governor certifies that the ICB needs are being met within the state. This certification became harder to justify when FTA began requiring a more stringent consultation process before certification could be given. The objectives of this study are to learn about current practices of ICB service funding mechanisms, funds prioritization, and determination processes and strategies that promote ICB service. An assessment methodology for Montana was developed to determine whether ICB needs are being adequately met and how to allocate funds to support service. The results of this study will be valuable to other states considering developing methodologies for certification and funding allocation purposes.Item Incorporating wildlife passive use values in collision mitigation benefit-cost calculations(Nevada Department of Transportation, 2019-09) Duffield, John; Neher, ChrisThis document is a task report for a larger Wildlife Vehicle Collision (WVC) Reduction and Habitat Connectivity pooled fund study. It addresses the potential use of passive use economic values for wildlife to inform the mitigation of wildlife-vehicle collisions. Passive use, also known as non-use values, are the values individuals place on the existence of a given animal species or population as well as the bequest value of knowing that future generations will also benefit from preserving the species. This report provides a summary of the current literature of wildlife passive use value estimates and provides per-animal passive use values for selected species and populations. Additionally, an example of applying these values to a Montana road segment is outlined. Finally, a discussion of regional economic impacts of mitigation structure spending is outlined.Item Infection Risk Reduction Program on Pathogens in High School and Collegiate Athletic Training Rooms(SAGE Publications, 2019-10) LaBelle, Mark W.; Knapik, Derrick M.; Arbogast, James W.; Zhou, Steve; Bowersock, Lisa; Parker, Albert; Voos, James E.Background: Athletic training rooms have a high prevalence of bacteria, including multidrug-resistant organisms, increasing the risk for both local and systematic infections in athletes. There are limited data outlining formal protocols or standardized programs to reduce bacterial and viral burden in training rooms as a means of decreasing infection rate at the collegiate and high school levels. Hypothesis: Adaptation of a hygiene protocol would lead to a reduction in bacterial and viral pathogen counts in athletic training rooms. Study Design: Cohort study. Level of Evidence: Level 3. Methods: Two high school and 2 collegiate athletic training rooms were studied over the course of the 2017-2018 academic year. A 3-phase protocol, including introduction of disinfectant products followed by student-athlete and athletic trainer education, was implemented at the 4 schools. Multiple surfaces in the athletic training rooms were swabbed at 4 time points throughout the investigation. Bacterial and viral burden from swabs were analyzed for overall bacterial aerobic plate count (APC), bacterial adenosine triphosphate activity, influenza viral load, and multidrug-resistant organisms such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE). Results: Overall bacterial load, as measured by APC, was reduced by 94.7% (95% CI, 72.6-99.0; P = 0.003) over the course of the investigation after protocol implementation. MRSA and VRE were found on 24% of surfaces prior to intervention and were reduced to 0% by the end of the study. Influenza was initially detected on 25% of surfaces, with no detection after intervention. No cases of athletic training room–acquired infections were reported during the study period. Conclusion: A uniform infection control protocol was effective in reducing bacterial and viral burden, including multi drug resistant organisms, when implemented in the athletic training rooms of 2 high schools and 2 colleges. Clinical Relevance: A standardized infection control protocol can be utilized in athletic training rooms to reduce bacterial and viral burden.Item Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor(Springer Science and Business Media LLC, 2019-11) Park, Heejoon; McGill, S. Lee; Arnold, Adrienne D.; Carlson, Ross P.Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the literature. The best described CCR strategy, referred to here as classic CCR (cCCR), has been experimentally and theoretically studied using model organisms such as Escherichia coli. cCCR phenotypes are often used to generalize universal strategies for fitness, sometimes incorrectly. For instance, extremely competitive microorganisms, such as Pseudomonads, which arguably have broader global distributions than E. coli, have achieved their success using metabolic strategies that are nearly opposite of cCCR. These organisms utilize a CCR strategy termed ‘reverse CCR’ (rCCR), because the order of preferred substrates is nearly reverse that of cCCR. rCCR phenotypes prefer organic acids over glucose, may or may not select preferred substrates to optimize growth rates, and do not allocate intracellular resources in a manner that produces an overflow metabolism. cCCR and rCCR have traditionally been interpreted from the perspective of monocultures, even though most microorganisms live in consortia. Here, we review the basic tenets of the two CCR strategies and consider these phenotypes from the perspective of resource acquisition in consortia, a scenario that surely influenced the evolution of cCCR and rCCR. For instance, cCCR and rCCR metabolism are near mirror images of each other; when considered from a consortium basis, the complementary properties of the two strategies can mitigate direct competition for energy and nutrients and instead establish cooperative division of labor.Item An Affective Computing in Virtual Reality Environments for Managing Surgical Pain and Anxiety(2019-12) Prabhu, Vishnunarayan G.; Linder, Courtney; Stanley, Laura M.; Morgan, RobertPain and anxiety are common accompaniments of surgery. About 90% of people indicate elevated levels of anxiety during pre-operative care, and 66% of the people report moderate to high levels of pain immediately after surgery. Currently, opioids are the primary method for pain management during postoperative care, and approximately one in 16 surgical patients prescribed opioids becomes a long-term user. This, along with the current opioid epidemic crisis calls for alternative pain management mechanisms. This research focuses on utilizing affective computing techniques to develop and deliver an adaptive virtual reality experience based on the user's physiological response to reduce pain and anxiety. Biofeedback is integrated with a virtual environment utilizing the user's heart rate variability, respiration, and electrodermal activity. Early results from Total Knee Arthroplasty patients undergoing surgery at Patewood Memorial Hospital in Greenville, SC demonstrate promising results in the management of pain and anxiety during pre and post-operative care.Item Association Between Perceived Workload and Adverse Body Posture(2019-09) Nino, Valentina; Marchak, Frank; Claudio, DavidWork Related Musculoskeletal Disorders (WMSDs) can be a result of complex interactions between physical, psychosocial, biological, and individual characteristics. However, the evidence on specific associations is still inconclusive. A previous study conducted at a Sterile Processing Department (SPD) in a local hospital established an association between perceived job demands and adverse body postures. However, causal inferences were not possible to establish given the study design. Consequently, the objective of this study was to determine if perception of mental workload causes workers to use more risky body postures. Objective and subjective assessment tools (REBA and NASA-TLX scores) were used as indicators of body postures and mental workload. The findings indicated that there is a positive relationship between the perception of workload (NASA-TLX scores) and adverse body postures (REBA scores) suggesting that people tend to adopt more awkward postures when they feel they are in a rush condition or they have more things to do.Item A simulation of variability-oriented sequencing rules on block surgical scheduling(2016-12) Nino, Luisa; Harris, Sean; Claudio, DavidSurgery scheduling has received considerable attention in recent years. Block schedules, in which surgeon groups utilize the OR for whatever surgeries they have scheduled for the day, present additional challenges to schedulers. While mean operation times are often used as the primary factor in scheduling strategies, the variability of these operations is not. Recent research suggests that sequencing surgeries based on their variation may decrease the number of late surgery starts. This article builds upon this emerging methodology of variability-oriented sequencing rules for block schedules. Discrete event simulation was used to examine the effectiveness of different sequencing algorithms in reducing the number of behind schedule surgeries and their magnitude. The number and magnitude of tardy surgeries and the patient waiting time were significantly improved by an average of 40% with the proposed scheduling strategies. Additional simulations explored several variations of the variability-based scheduling methodology.Item Development, standardization, and validation of a biofilm efficacy test: The single tube method(2019-10) Goeres, Darla M.; Walker, Diane K.; Buckingham-Meyer, Kelli; Lorenz, Lindsey A.; Summers, Jennifer; Fritz, Blaine; Goveia, Danielle; Dickerman, Grace; Schultz, Johanna M.; Parker, Albert E.Methods validated by a standard setting organization enable public, industry and regulatory stakeholders to make decisions on the acceptability of products, devices and processes. This is because standard methods are demonstrably reproducible when performed in different laboratories by different researchers, responsive to different products, and rugged when small (usually inadvertent) variations from the standard procedure occur. The Single Tube Method (ASTM E2871) is a standard method that measures the efficacy of antimicrobials against biofilm bacteria that has been shown to be reproducible, responsive and rugged. In support of the reproducibility assessment, a six-laboratory study was performed using three antimicrobials: a sodium hypochlorite, a phenolic and a quaternary/alcohol blend, each tested at low and high efficacy levels. The mean log reduction in viable bacteria in this study ranged from 2.32 to 4.58 and the associated reproducibility standard deviations ranged from 0.89 to 1.67. Independent follow-up testing showed that the method was rugged with respect to deviations in sonication duration and sonication power but slightly sensitive to sonicator reservoir degassing and tube location within the sonicator bath. It was also demonstrated that when a coupon was dropped into a test tube, bacteria can splash out of reach of the applied antimicrobials, resulting in substantial bias when estimating log reductions for the products tested. Bias can also result when testing products that hinder the harvesting of microbes from test surfaces. The culmination of this work provided recommended changes to the early version of the standard method E2871-13 (ASTM, 2013b) including use of splashguards and microscopy checks. These changes have been incorporated into a revised ASTM method E2871-19 (ASTM 2019) that is the basis for the first regulatory method (ATMP-MB-20) to substantiate “kills biofilm” claims for antimicrobials registered and sold in the US.