Publications by Colleges and Departments (MSU - Bozeman)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3
Browse
6 results
Search Results
Item Multi-level Omics Analysis Provides Insight to the Ignicoccus hospitalis-Nanoarchaeum equitans Association(2017-09) Rawle, Rachel A.; Hamerly, Timothy; Tripet, Brian P.; Giannone, Richard J.; Wurch, Louie; Hettich, Robert L.; Podar, Mircea; Copie, Valerie; Bothner, BrianBACKGROUND Studies of interspecies interactions are inherently difficult due to the complex mechanisms which enable these relationships. A model system for studying interspecies interactions is the marine hyperthermophiles Ignicoccus hospitalis and Nanoarchaeum equitans. Recent independently-conducted 'omics' analyses have generated insights into the molecular factors modulating this association. However, significant questions remain about the nature of the interactions between these archaea. METHODS We jointly analyzed multiple levels of omics datasets obtained from published, independent transcriptomics, proteomics, and metabolomics analyses. DAVID identified functionally-related groups enriched when I. hospitalis is grown alone or in co-culture with N. equitans. Enriched molecular pathways were subsequently visualized using interaction maps generated using STRING. RESULTS Key findings of our multi-level omics analysis indicated that I. hospitalis provides precursors to N. equitans for energy metabolism. Analysis indicated an overall reduction in diversity of metabolic precursors in the I. hospitalis-N. equitans co-culture, which has been connected to the differential use of ribosomal subunits and was previously unnoticed. We also identified differences in precursors linked to amino acid metabolism, NADH metabolism, and carbon fixation, providing new insights into the metabolic adaptions of I. hospitalis enabling the growth of N. equitans. CONCLUSIONS This multi-omics analysis builds upon previously identified cellular patterns while offering new insights into mechanisms that enable the I. hospitalis-N. equitans association. GENERAL SIGNIFICANCE Our study applies statistical and visualization techniques to a mixed-source omics data set to yield a more global insight into a complex system, that was not readily discernable from separate omics studies.Item Quantitative NMR metabolite profiling of methicillin-resistant and methicillin-susceptible Staphylococcus aureus discriminates between biofilm and planktonic phenotypes(2013-06) Ammons, Mary Cloud B.; Tripet, Brian P.; Carlson, Ross P.; Kirker, Kelly R.; Gross, M. A.; Stanisich, Jessica J.; Copie, ValerieWound bioburden in the form of colonizing biofilms is a major contributor to nonhealing wounds. Staphylococcus aureus is a Gram-positive, facultative anaerobe commonly found in chronic wounds; however, much remains unknown about the basic physiology of this opportunistic pathogen, especially with regard to the biofilm phenotype. Transcriptomic and proteomic analysis of S. aureus biofilms have suggested that S. aureus biofilms exhibit an altered metabolic state relative to the planktonic phenotype. Herein, comparisons of extracellular and intracellular metabolite profiles detected by 1H NMR were conducted for methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) S. aureus strains grown as biofilm and planktonic cultures. Principal component analysis distinguished the biofilm phenotype from the planktonic phenotype, and factor loadings analysis identified metabolites that contributed to the statistical separation of the biofilm from the planktonic phenotype, suggesting that key features distinguishing biofilm from planktonic growth include selective amino acid uptake, lipid catabolism, butanediol fermentation, and a shift in metabolism from energy production to assembly of cell-wall components and matrix deposition. These metabolite profiles provide a basis for the development of metabolite biomarkers that distinguish between biofilm and planktonic phenotypes in S. aureus and have the potential for improved diagnostic and therapeutic use in chronic wounds.Item 1H, 13C, 15N backbone and side chain NMR resonance assignments of the N-terminal NEAr iron transporter domain 1 (NEAT 1) of the hemoglobin receptor IsdB of Staphylococcus aureus(2014-04) Fonner, Brittany A.; Tripet, Brian P.; Lui, Mengyao; Zhu, Hui; Lei, Benfang; Copie, ValerieStaphylococcus aureus is an opportunistic pathogen that causes skin and severe infections in mammals. Critical to S. aureus growth is its ability to scavenge iron from host cells. To this effect, S. aureus has evolved a sophisticated pathway to acquire heme from hemoglobin (Hb) as a preferred iron source. The pathway is comprised of nine iron-regulated surface determinant (Isd) proteins involved in heme capture, transport, and degradation. A key protein of the heme acquisition pathway is the surface-anchored hemoglobin receptor protein IsdB, which is comprised of two NEAr transporter (NEAT) domains that act in concert to bind Hb and extract heme for subsequent transfer to downstream acquisition pathway proteins. Despite significant advances in the structural knowledge of other Isd proteins, the structural mechanisms and molecular basis of the IsdB-mediated heme acquisition process are not well understood. In order to provide more insights into the mode of function of IsdB, we have initiated NMR structural studies of the first NEAT domain of IsdB (IsdBN1). Herein, we report the near complete 1H, 13C and 15N resonance assignments of backbone and side chain atoms, and the secondary structural topology of the 148-residue IsdB NEAT 1 domain. The NMR results are consistent with the presence of eight β-strands and one α-helix characteristic of an immunoglobulin-like fold observed in other NEAT domain family proteins. This work provides a solid framework to obtain atomic-level insights toward understanding how IsdB mediates IsdB-Hb protein–protein interactions critical for heme capture and transfer.Item Solution Structure and Molecular Determinants of Hemoglobin Binding of the first NEAT Domain of IsdB in Staphylococcus aureus(2014-06) Fonner, Brittany A.; Tripet, Brian P.; Eilers, Brian J.; Stanisich, Jessica J.; Sullivan-Springhetti, Rose K.; Moore, Rebecca; Liu, Mengyao; Lei, Benfang; Copie, ValerieThe human pathogen Staphylococcus aureus acquires heme iron from hemoglobin (Hb) via the action of a series of iron-regulated surface determinant (Isd) proteins. The cell wall anchored IsdB protein is recognized as the predominant Hb receptor, and is comprised of two NEAr transporter (NEAT) domains that act in concert to bind, extract, and transfer heme from Hb to downstream Isd proteins. Structural details of the NEAT 2 domain of IsdB have been investigated, but the molecular coordination between NEAT 2 and NEAT 1 to extract heme from hemoglobin has yet to be characterized. To obtain a more complete understanding of IsdB structure and function, we have solved the 3D solution structure of the NEAT 1 domain of IsdB (IsdBN1) spanning residues 125–272 of the full-length protein by NMR. The structure reveals a canonical NEAT domain fold and has particular structural similarity to the NEAT 1 and NEAT 2 domains of IsdH, which also interact with Hb. IsdBN1 is also comprised of a short N-terminal helix, which has not been previously observed in other NEAT domain structures. Interestingly, the Hb binding region (loop 2 of IsdBN1) is disordered in solution. Analysis of Hb binding demonstrates that IsdBN1 can bind metHb weakly and the affinity of this interaction is further increased by the presence of IsdB linker domain. IsdBN1 loop 2 variants reveal that phenylalanine 164 (F164) of IsdB is necessary for Hb binding and rapid heme transfer from metHb to IsdB. Together, these findings provide a structural role for IsdBN1 in enhancing the rate of extraction of metHb heme by the IsdB NEAT 2 domain.Item ¹H, ¹³C, ¹⁵N backbone and side chain NMR resonance assignments of the N-terminal NEAr iron transporter domain 1 (NEAT 1) of the hemoglobin receptor IsdB of Staphylococcus aureus(2013-05) Fonner, Brittany A.; Tripet, Brian P.; Lui, Mengyao; Lei, Benfang; Copie, ValerieStaphylococcus aureus is an opportunistic pathogen that causes skin and severe infections in mammals. Critical to S. aureus growth is its ability to scavenge iron from host cells. To this effect, S. aureus has evolved a sophisticated pathway to acquire heme from hemoglobin (Hb) as a preferred iron source. The pathway is comprised of nine iron-regulated surface determinant (Isd) proteins involved in heme capture, transport, and degradation. A key protein of the heme acquisition pathway is the surface-anchored hemoglobin receptor protein IsdB, which is comprised of two NEAr transporter (NEAT) domains that act in concert to bind Hb and extract heme for subsequent transfer to downstream acquisition pathway proteins. Despite significant advances in the structural knowledge of other Isd proteins, the structural mechanisms and molecular basis of the IsdB-mediated heme acquisition process are not well understood. In order to provide more insights into the mode of function of IsdB, we have initiated NMR structural studies of the first NEAT domain of IsdB (IsdBN1). Herein, we report the near complete 1H, 13C and 15N resonance assignments of backbone and side chain atoms, and the secondary structural topology of the 148-residue IsdB NEAT 1 domain. The NMR results are consistent with the presence of eight β-strands and one α-helix characteristic of an immunoglobulin-like fold observed in other NEAT domain family proteins. This work provides a solid framework to obtain atomic-level insights toward understanding how IsdB mediates IsdB-Hb protein–protein interactions critical for heme capture and transfer.Item Non-Heme-Binding Domains and Segments of the Staphylococcus aureus IsdB Protein Critically Contribute to the Kinetics and Equilibriumof Heme Acquisition from Methemoglobin(2014-06) Zhu, Hui; Li, Dengfeng; Liu, Mengyao; Copie, Valerie; Lei, BenfangThe hemoglobin receptor IsdB rapidly acquires heme from methemoglobin (metHb) in the heme acquisition pathway of Staphylococcus aureus. IsdB consists of N-terminal segment (NS), NEAT1 (N1), middle (MD), and heme binding NEAT2 (N2) domains, and C-terminal segment (CS). This study aims to elucidate the roles of these domains or segments in the metHb/IsdB reaction. Deletion of CS does not alter the kinetics and equilibrium of the reaction. Sequential deletions of NS and N1 in NS-N1-MD-N2 progressively reduce heme transfer rates and change the kinetic pattern from one to two phases, but have no effect on the equilibrium of the heme transfer reaction, whereas further deletion of MD reduces the percentage of transferred metHb heme. MD-N2 has higher affinity for heme than N2. MD in trans reduces rates of heme dissociation from holo-N2 and increases the percentage of metHb heme captured by N2 by 4.5 fold. NS-N1-MD and N2, but not NS-N1, MD, and N2, reconstitute the rapid metHb/IsdB reaction. NS-N1-MD-NIsdC, a fusion protein of NS-N1-MD and the NEAT domain of IsdC, slowly acquires heme from metHb by itself but together with N2 results in rapid heme loss from metHb. Thus, NS-N1 and MD domains specifically and critically contribute to the kinetics and equilibrium of the metHb/IsdB reaction, respectively. These findings support a mechanism of direct heme acquisition by IsdB in which MD enhances the affinity of N2 for heme to thermodynamically drive heme transfer from metHb to IsdB and in which NS is required for the rapid and single phase kinetics of the metHb/IsdB reaction.