Physics

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/52

The Physics department is committed to education and research in physics, the study of the fundamental universal laws that govern the behavior of matter and energy, and the exploration of the consequences and applications of those laws. Our department is widely known for its excellent teaching and student mentoring. Our department plays an important role in the university’s Core Curriculum. We have strong academic programs with several options for undergraduate physics majors, leading to the B.S. degree, as well as graduate curricula leading to the M.S. and Ph.D. degrees. Our research groups span a variety of fields within physics. Our principal concentrations are in Astrophysics, Relativity, Gravitation and Cosmology, Condensed Matter Physics, Lasers and Optics, Physics Education, Solar Physics, and the Space Science and Engineering Lab.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    The ALMA View of Positive Black Hole Feedback in the Dwarf Galaxy Henize 2–10
    (American Astronomical Society, 2024-03) Gim, Hansung B.; Reines, Amy E.
    Henize 2–10 is a dwarf starburst galaxy hosting a ∼106M⊙ black hole (BH) that is driving an ionized outflow and triggering star formation within the central ∼100 pc of the galaxy. Here, we present Atacama Large Millimeter/submillimeter Array continuum observations from 99 to 340 GHz, as well as spectral line observations of the molecules CO (1–0, 3–2), HCN (1–0, 3–2), and HCO+ (1–0, 3–2), with a focus on the BH and its vicinity. Incorporating centimeter-wave radio measurements from the literature, we show that the spectral energy distribution of the BH is dominated by synchrotron emission from 1.4 to 340 GHz, with a spectral index of α ≈ − 0.5. We analyze the spectral line data and identify an elongated molecular gas structure around the BH with a velocity distinct from the surrounding regions. The physical extent of this molecular gas structure is ≈130 pc × 30 pc and the molecular gas mass is ∼106M⊙. Despite an abundance of molecular gas in this general region, the position of the BH is significantly offset from the peak intensity, which may explain why the BH is radiating at a very low Eddington ratio. Our analysis of the spatially resolved line ratio between CO J = 3–2 and J = 1–0 implies that the CO gas in the vicinity of the BH is highly excited, particularly at the interface between the BH outflow and the regions of triggered star formation. This suggests that the cold molecular gas is being shocked by the bipolar outflow from the BH, supporting the case for positive BH feedback.
  • Thumbnail Image
    Item
    Toward a More Complex Understanding of Natal Super Star Clusters with Multiwavelength Observations
    (American Astronomical Society, 2021-09) Costa, Allison H.; Johnson, Kelsey E.; Indebetouw, Remy; Finn, Molly K.; Brogan, Crystal L.; Reines, Amy
    Henize 2–10 (He 2–10) is a nearby (D = 9 Mpc) starbursting blue compact dwarf galaxy that boasts a high star formation rate and a low-luminosity active galactic nucleus. He 2–10 is also one of the first galaxies in which embedded super star clusters (SSCs) were discovered. SSCs are massive, compact star clusters that will impact their host galaxies dramatically when their massive stars evolve. Here, we discuss radio, submillimeter, and infrared observations of He 2–10 from 1.87 μm to 6 cm in high angular resolution (∼0.3''), which allows us to disentangle individual clusters from aggregate complexes as identified at lower resolution. These results indicate the importance of spatial resolution to characterize SSCs, as low resolution studies of SSCs average over aggregate complexes that may host SSCs at different stages of evolution. We explore the thermal, nonthermal, and dust emission associated with the clusters along with dense molecular tracers to construct a holistic review of the natal SSCs that have yet to dramatically disrupt their parent molecular clouds. We assess the production rate of ionizing photons, extinction, total mass, and the star formation efficiency (SFE) associated with the clusters. Notably, we find that the SFE for the some of the natal clusters is high (>70%), which suggests that these clusters could remain bound even after the gas is dispersed from the system from stellar feedback mechanisms. If they remain bound, these SSCs could survive to become objects indistinguishable from globular clusters.
  • Thumbnail Image
    Item
    DIISC-I: The Discovery of Kinematically Anomalous H i Clouds in M 100
    (American Astronomical Society, 2021-11) Gim, Hansung B.; Borthakur, Sanchayeeta; Momjian, Emmanuel; Padave, Mansi; Jansen, Rolf A.; Nelson, Dylan; Heckman, Timothy M.; Kennicutt Jr., Robert C.; Fox, Andrew J.; Pineda, Jorge L.; Thilker, David; Kauffmann, Guinevere; Tumlinson, Jason
    We report the discovery of two kinematically anomalous atomic hydrogen (H i) clouds in M 100 (NGC 4321), which was observed as part of the Deciphering the Interplay between the Interstellar medium, Stars, and the Circumgalactic medium (DIISC) survey in H i 21 cm at 3.3 km s−1 spectroscopic and 44″ × 30″ spatial resolution using the Karl G. Jansky Very Large Array. 15 15 The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. These clouds were identified as structures that show significant kinematic offsets from the rotating disk of M 100. The velocity offsets of 40 km s−1 observed in these clouds are comparable to the offsets seen in intermediate-velocity clouds (IVCs) in the circumgalactic medium (CGM) of the Milky Way and nearby galaxies. We find that one anomalous cloud in M 100 is associated with star-forming regions detected in Hα and far-ultraviolet imaging. Our investigation shows that anomalous clouds in M 100 may originate from multiple mechanisms, such as star formation feedback-driven outflows, ram pressure stripping, and tidal interactions with satellite galaxies. Moreover, we do not detect any cool CGM at 38.8 kpc from the center of M 100, giving an upper limit of N(H i) ≤1.7 × 1013 cm−2 (3σ). Since M 100 is in the Virgo cluster, the nonexistence of neutral/cool CGM is a likely pathway for turning it into a red galaxy.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.