College of Letters & Science
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/37
The College of Letters and Science, the largest center for learning, teaching and research at Montana State University, offers students an excellent liberal arts and sciences education in nearly 50 majors, 25 minors and over 25 graduate degrees within the four areas of the humanities, natural sciences, mathematics and social sciences.
Browse
4 results
Search Results
Item Base-Catalyzed Phenol-Mannich Condensation of Preformed Cesium Iminodiacetate. The Direct Synthesis of Calcein Blue AM and Related Acyloxymethyl Esters(American Chemical Society, 2023-08) Mikesell, Logan D.; Livinghouse, TomA rapid and highly practical one-flask procedure for the positionally selective preparation of (acyloxy)methyl N-(2-hydroxybenzyl)iminodiacetate and related diesters from iminodiacetic acid and phenols is described. The key to this multicomponent phenol-Mannich condensation resides in the use of cesium iminodiacetate as the reaction partner. This protocol has been applied in an unusually direct synthesis of the intracellular fluorescent dye Calcein blue AM, for which scant experimental and spectroscopic data are presently available.Item N-(Trimethylsilyl)-2-amino-5-nitrothiazole: An Efficient Reagent for the Direct Synthesis of 2-Amino-5-nitrothiazole-Based Antimicrobial Agents(Georg Thieme Verlag KG, 2022-11) Livinghouse, Tom; Koenig, Heidi N.; Demeritte, Amethyst R.; Nelson, Genevieve P.Here we report the synthesis of a novel reagent designed to prepare 2-amino-5-nitrothiazole (ANT) amides and analogues in high yields. N-(Trimethylsilyl)-2-amino-5-nitrothiazole (N-(TMS)-ANT) was prepared in 99% yield via silylation of ANT using 1,1,1,3,3,3-hexamethyldisilazane (HMDS), trimethylsilyl chloride (TMSCl), and catalytic saccharin. N-(TMS)-ANT is a superb reagent for the preparation of ANT amides in excellent yields. Notably, cyclic anhydrides and base-sensitive acyl chlorides can be utilized with N-(TMS)-ANT to furnish ANT amides that are difficult to prepare by previously reported procedures.Item Copper(I)-Catalyzed Cross-Coupling of 1-Bromoalkynes with N-Heterocyclic Organozinc Reagents(MDPI AG, 2022-07) Frabitore, Christian; Lépeule, Jérome; Livinghouse, TomNitrogen-containing heterocycles represent the majority of FDA-approved small-molecule pharmaceuticals. Herein, we describe a synthetic method to produce saturated N-heterocyclic drug scaffolds with an internal alkyne for elaboration. The treatment of N,N-dimethylhydrazinoalkenes with Et2Zn, followed by a Cu(I)-catalyzed cross-coupling with 1-bromoalkynes, results in piperidines and pyrrolidines with a good yield. Five examples are reported and a proposed mechanism for the Cu(I)-catalyzed cross-coupling is presented.Item Antimicrobial activity of naturally occurring phenols and derivatives against biofilm and planktonic bacteria(2019-10) Walsh, Danica J.; Livinghouse, Tom; Goeres, Darla M.; Mettler, Madelyn; Stewart, Philip S.Biofilm-forming bacteria present formidable challenges across diverse settings, and there is a need for new antimicrobial agents that are both environmentally acceptable and relatively potent against microorganisms in the biofilm state. The antimicrobial activity of three naturally occurring, low molecular weight, phenols, and their derivatives were evaluated against planktonic and biofilm Staphylococcus epidermidis and Pseudomonas aeruginosa. The structure activity relationships of eugenol, thymol, carvacrol, and their corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4-n-propyl derivatives were evaluated. Allyl derivatives showed a consistent increased potency with both killing and inhibiting planktonic cells but they exhibited a decrease in potency against biofilms. This result underscores the importance of using biofilm assays to develop structure-activity relationships when the end target is biofilm.