College of Agriculture

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/4

As the foundation of the land grant mission at Montana State University, the College of Agriculture and the Montana Agricultural Experiment Station provide instruction in traditional and innovative degree programs and conduct research on old and new challenges for Montana’s agricultural community. This integration creates opportunities for students and faculty to excel through hands-on learning, to serve through campus and community engagement, to explore unique solutions to distinct and interesting questions and to connect Montanans with the global community through research discoveries and outreach.

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Wildflower Seed Sales as Incentive for Adopting Flower Strips for Native Bee Conservation: A Cost-Benefit Analysis
    (2019-07) Delphia, Casey M.; O'Neill, Kevin M.; Burkle, Laura A.
    Improving pollinator habitat on farmlands is needed to further wild bee conservation and to sustain crop pollination in light of relationships between global declines in pollinators and reductions in floral resources. One management strategy gaining much attention is the use of wildflower strips planted alongside crops to provide supplemental floral resources for pollinators. However, farmer adoption of pollinator-friendly strategies has been minimal, likely due to uncertainty about costs and benefits of providing non-crop flowering plants for bees. Over 3 yr, on four diversified farms in Montana, United States, we estimated the potential economic profit of harvesting and selling wildflower seeds collected from flower strips implemented for wild bee conservation, as an incentive for farmers to adopt this management practice. We compared the potential profitability of selling small retail seed packets versus bulk wholesale seed. Our economic analyses indicated that potential revenue from retail seed sales exceeded the costs associated with establishing and maintaining wildflower strips after the second growing season. A wholesale approach, in contrast, resulted in considerable net economic losses. We provide proof-of-concept that, under retail scenarios, the sale of native wildflower seeds may provide an alternative economic benefit that, to our knowledge, remains unexplored. The retail seed-sales approach could encourage greater farmer adoption of wildflower strips as a pollinator-conservation strategy in agroecosystems. The approach could also fill a need for regionally produced, native wildflower seed for habitat restoration and landscaping aimed at conserving native plants and pollinators.
  • Thumbnail Image
    Item
    Checklist of bees (Hymenoptera: Apoidea) from small diversified vegetable farms in south-western Montana
    (2019-01) Delphia, Casey M.; Griswold, Terry; Reese, Elizabeth G.; O'Neill, Kevin M.; Burkle, Laura A.
    Background: Over three years (2013-2015), we sampled bees using nets and bowl traps on four diversified vegetable farms in Gallatin County, Montana, USA, as part of a study evaluating the use of wildflower strips for supporting wild bees and crop pollination services on farmlands (Delphia et al. In prep). We document 202 species and morphospecies from 32 genera within five families, of which 25 species represent the first published state records for Montana. This study increases our overall understanding of the distribution of wild bee species associated with agroecosystems of the northern US Rockies, which is important for efforts aimed at conserving bee biodiversity and supporting sustainable crop pollination systems on farmlands. New information: We provide a species list of wild bees associated with diversified farmlands in Montana and increase the number of published bee species records in the state from 374 to at least 399. The list includes new distributional records for 25 wild bee species, including two species that represent considerable expansions of their known ranges, Lasioglossum (Dialictus) clematisellum (Cockerell 1904) with previously published records from New Mexico, Arizona, California and Utah and Melissodes (Eumelissodes) niveus Robertson 1895 which was reported to range from New York to Minnesota and Kansas, south to North Carolina, Alabama and Mississippi.
  • Thumbnail Image
    Item
    A list of bees from three locations in the Northern Rockies Ecoregion (NRE) of Montana
    (2018-10) Burkle, Laura A.; Delphia, Casey M.; Reese, Elizabeth G.; Griwold, Terry
    Background Wild bees that were collected in conjunction with a larger study are presented as a checklist of species for the Northern Rockies Ecoregion of Montana, USA. Over the course of four field seasons (2013-2016), 281 species and morphospecies in 32 genera and five families were collected using insect nets, and identified. This paper addresses the distinct lack of studies monitoring bee species in Montana and contributes to a basic understanding of fauna in the northern Rocky Mountains. New information With this study, the number of known bee species in Montana increases by at least six species, from 366 (Kuhlman and Burrows 2017) to 372. Though literature was not reviewed for all the species on this checklist, published records in Montana revealed no listings for Andrena saccata Viereck; Anthidiellum notatum robertsoni (Cockerell); Ashmeadiella meliloti (Cockerell); Ashmeadiella pronitens (Cockerell); Colletes lutzi lutzi Timberlake; and Dioxys productus (Cresson).
  • Thumbnail Image
    Item
    Bumble Bees (Hymenoptera: Apidae) of Montana
    (2017-09) Dolan, Amelia C.; Delphia, Casey M.; O'Neill, Kevin M.; Ivie, Michael A.
    Montana supports a diverse assemblage of bumble bees (Bombus Latreille) due to its size, landscape diversity, and location at the junction of known geographic ranges of North American species. We compiled the first inventory of Bombus species in Montana, using records from 25 natural history collections and labs engaged in bee research, collected over the past 125 years, as well as specimens collected specifically for this project during the summer of 2015. Over 12,000 records are included, with 28 species of Bombus now confirmed in the state. Based on information from nearby regions, four additional species are predicted to occur in Montana. Of the 28 species, Bombus bimaculatus Cresson and Bombus borealis Kirby are new state records. The presence of B. borealis was previously predicted, but the presence of B. bimaculatus in Montana represents a substantial extension of its previously reported range. Four additional \ eastern\" bumble bee species are recorded from the state, and three species pairs thought to replace one another from the eastern to western United States are now known to be sympatric in Montana. Additionally, our data are consistent with reported declines in populations of Bombus occidentalis Greene and Bombus suckleyi Greene, highlighting a need for targeted surveys of these two species in Montana."
  • Thumbnail Image
    Item
    Seasonal trends in the condition of nesting females of a solitary bee: wing wear, lipid content, and oocyte size
    (2015-07) O'Neill, Kevin M.; Delphia, Casey M.; Pitts-Singer, Theresa L.
    During the nesting season, adult females of the solitary bee Megachile rotundata (F.) face considerable physical and energy demands that could include increasing wear and tear on their bodies and decreasing lipid reserves. Consequently, their reproductive performance may be affected not only by extrinsic factors (e.g., weather and floral resource availability), but intrinsic changes in their own bodies. Because of the potential fitness effects of seasonal changes in body condition, our objectives were to determine how wing wear, lipid reserves, and oocyte sizes vary during nesting seasons, beginning when females emerge as adults. As nesting progressed, females in two populations experienced a steady increase in wing wear, which is known to reduce foraging efficiency and increase risk of mortality in other bees. Soon after emergence, females exhibited sharp declines in lipid content which remained low for the remainder of the season. Newly-emerged females ingested pollen, an activity known to be correlated with the initiation of egg maturation in this species. Additionally, the early summer drop in lipid stores was correlated with an increase in the size of the oocytes carried. However, by ∼6 weeks after emergence, oocytes began to decrease in length and volume, perhaps due to nutrient deficiencies related to loss of stored lipids. Our results suggest management of M. rotundata should include rearing bees at temperatures that maximize stored lipid reserves in adults and timing bee release so that significant pollen resources are available for both adults and offspring.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.