College of Agriculture

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/4

As the foundation of the land grant mission at Montana State University, the College of Agriculture and the Montana Agricultural Experiment Station provide instruction in traditional and innovative degree programs and conduct research on old and new challenges for Montana’s agricultural community. This integration creates opportunities for students and faculty to excel through hands-on learning, to serve through campus and community engagement, to explore unique solutions to distinct and interesting questions and to connect Montanans with the global community through research discoveries and outreach.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Effect of the Monothiol Glutaredoxin GrxD on 2,4-Diacetylphloroglucinol Biosynthesis and Biocontrol Activity of Pseudomonas fluorescens 2P24
    (Frontiers Media SA, 2022-07) Dong, Qiuling; Yan, Qing; Zhang, Bo; Zhang, Li-qun; Wu, Xiaogang
    Pseudomonas fluorescens 2P24 is a plant root-associated bacterium that suppresses several soilborne plant diseases due to its production of the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG). The biosynthesis of 2,4-DAPG is controlled by many regulatory elements, including the global regulator of the Gac/Rsm regulon and the pathway-specific repressor PhlF. In this work, a novel genetic element grxD, which encodes the monothiol glutaredoxin GrxD, was identified and characterized in the production of 2,4-DAPG in P. fluorescens 2P24. Our data showed that the mutation of grxD remarkably decreased 2,4-DAPG production. GrxD lost its ability to alter the production of 2,4-DAPG when the active-site CGFS motif of GrxD was mutated by site-directed mutagenesis. Further studies showed that the RsmA and RsmE proteins were essential for the GrxD-mediated regulation of 2,4-DAPG and exoprotease production. In addition, our data revealed that the deletion of grxD increased the expression of phlF, which negatively regulated the production of 2,4-DAPG. In addition, the grxD mutant was severely impaired in the biocontrol effect against the bacterial wilt of tomato. Overall, our results indicated that the monothiol glutaredoxin GrxD is involved in the production of 2,4-DAPG of P. fluorescens by influencing the Gac/Rsm global signaling pathway and transcriptional regulator PhlF and is essential for the biocontrol properties.
  • Thumbnail Image
    Item
    Identification and Characterization of Bacteria-Derived Antibiotics for the Biological Control of Pea Aphanomyces Root Rot
    (MDPI AG, 2022-08) Lai, Xiao; Niroula, Dhirendra; Burrows, Mary; Wu, Xiaogang; Yan, Qing
    Antibiosis has been proposed to contribute to the beneficial bacteria-mediated biocontrol against pea Aphanomyces root rot caused by the oomycete pathogen Aphanomyces euteiches. However, the antibiotics required for disease suppression remain unknown. In this study, we found that the wild type strains of Pseudomonas protegens Pf-5 and Pseudomonas fluorescens 2P24, but not their mutants that lack 2,4-diacetylphloroglucinol, strongly inhibited A. euteiches on culture plates. Purified 2,4-diacetylphloroglucinol compound caused extensive hyphal branching and stunted hyphal growth of A. euteiches. Using a GFP-based transcriptional reporter assay, we found that expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlAPf-5 is activated by germinating pea seeds. The 2,4-diacetylphloroglucinol producing Pf-5 derivative, but not its 2,4-diacetylphloroglucinol non-producing mutant, reduced disease severity caused by A. euteiches on pea plants in greenhouse conditions. This is the first report that 2,4-diacetylphloroglucinol produced by strains of Pseudomonas species plays an important role in the biocontrol of pea Aphanomyces root rot.
  • Thumbnail Image
    Item
    Citrate Synthase GltA Modulates the 2,4-Diacetylphloroglucinol Biosynthesis of Pseudomonas fluorescens 2P24 and is Essential for the Biocontrol Capacity
    (American Chemical Society, 2023-07) Yang, Qingqing; Yan, Qing; Zhang, Bo; Zhang, Li-qun; Wu, Xiaogang
    Carbon metabolism is critical for microbial physiology and remarkably affects the outcome of secondary metabolite production. The production of 2,4-diacetylphloroglucinol (2,4-DAPG), a bacterial secondary metabolite with a broad spectrum of antibiotic activity, is a major mechanism used by the soil bacterium Pseudomonas fluorescens 2P24 to inhibit the growth of plant pathogens and control disease occurrence. Strain 2P24 has evolved a complex signaling cascade to regulate the production of 2,4-DAPG. However, the role of the central carbon metabolism in modulating 2,4-DAPG production has not been fully determined. In this study, we report that the gltA gene, which encodes citrate synthase, affects the expression of the 2,4-DAPG biosynthesis gene and is essential for the biocontrol capacity of strain 2P24. Our data showed that the mutation of gltA remarkably decreased the biosynthesis of 2,4-DAPG. Consistent with this result, the addition of citrate in strain 2P24 resulted in increased 2,4-DAPG production and decreased levels of RsmA and RsmE. In comparison with the wild-type strain, the gltA mutant was severely impaired in terms of biocontrol activity against the bacterial wilt disease of tomato plants caused by Ralstonia solanacearum. Moreover, the gltA mutant exhibited increased antioxidant activity, and the expression of oxidative, stress-associated genes, including ahpB, katB, and oxyR, was significantly upregulated in the gltA mutant compared to the wild-type strain. Overall, our data indicate that the citrate synthase GltA plays an important role in the production of 2,4-DAPG and oxidative stress and is required for biocontrol capacity.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.