Land Resources & Environmental Sciences

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/11

The Department of Land Resources and Environmental Sciences at Montana State Universityoffers integrative, multi-disciplinary, science-based degree programs at the B.S., M.S., and Ph.D. levels.

Browse

Search Results

Now showing 1 - 10 of 21
  • Thumbnail Image
    Item
    Nocturnal Evapotranspiration in Eddy-Covariance Records from Three Co-Located Ecosystems in the Southeastern U.S.: Implications for Annual Fluxes
    (2009-09) Novick, Kimberly A.; Oren, Ram; Stoy, Paul C.; Siqueira, Mario B. S.; Katul, Gabriel G.
    Nocturnal evapotranspiration (ETN) is often assumed to be negligible in terrestrial ecosystems, reflecting the common assumption that plant stomata close at night to prevent water loss from transpiration. However, recent evidence across a wide range of species and climate conditions suggests that significant transpiration occurs at night, frustrating efforts to estimate total annual evapotranspiration (ET) from conventional methods such as the eddy-covariance technique. Here, the magnitude and variability of ETN is explored in multiple years of eddy-covariance measurements from three adjacent ecosystems in the Southeastern U.S.: an old grass field, a planted pine forest, and a late-successional hardwood forest. After removing unreliable data points collected during periods of insufficient turbulence, observed ETN averaged 8–9% of mean daytime evapotranspiration (ETD). ETN was driven primarily by wind speed and vapor pressure deficit and, in the two forested ecosystems, a qualitative analysis suggests a significant contribution from nocturnal transpiration. To gapfill missing data, we investigated several methodologies, including process-based multiple non-linear regression, relationships between daytime and nighttime ET fluxes, marginal distribution sampling, and multiple imputation. The utility of the gapfilling procedures was assessed by comparing simulated fluxes to reliably measured fluxes using randomly generated gaps in the data records, and by examining annual sums of ET from the different gapfilling techniques. The choice of gapfilling methodology had a significant impact on estimates of annual ecosystem water use and, in the most extreme cases, altered the annual estimate of ET by over 100 mm year−1, or ca. 15%. While no single gapfiling methodology appeared superior for treating data from all three sites, marginal distribution sampling generally performed well, producing flux estimates with a site average bias error of <10%, and a mean absolute error close to the random measurement error of the dataset (12.2 and 9.8 W m−2, respectively).
  • Thumbnail Image
    Item
    The Effects of Elevated Atmospheric CO2 and Nitrogen Amendments on Subsurface CO2 Production and Concentration Dynamics in a Maturing Pine Forest
    (2009-05) Daly, Edoardo; Palmroth, Sari; Stoy, Paul C.; Siqueira, Mario B. S.; Oishi, A. Christopher; Juang, Jehn-Yih; Oren, Ram; Porporato, Amilcare; Katul, Gabriel G.
    Profiles of subsurface soil CO2 concentration, soil temperature, and soil moisture, and throughfall were measured continuously during the years 2005 and 2006 in 16 locations at the free air CO2 enrichment facility situated within a temperate loblolly pine (Pinus taeda L.) stand. Sampling at these locations followed a 4 by 4 replicated experimental design comprised of two atmospheric CO2 concentration levels (ambient [CO2]a, ambient + 200 ppmv, [CO2]e) and two soil nitrogen (N) deposition levels (ambient, ambient + fertilization at 11.2 gN m−2 year−1). The combination of these measurements permitted indirect estimation of below ground CO2 production and flux profiles in the mineral soil. Adjacent to the soil CO2 profiles, direct (chamber-based) measurements of CO2 fluxes from the soil–litter complex were simultaneously conducted using the automated carbon efflux system. Based on the measured soil CO2 profiles, neither [CO2]e nor N fertilization had a statistically significant effect on seasonal soil CO2, CO2 production, and effluxes from the mineral soil over the study period. Soil moisture and temperature had different effects on CO2 concentration depending on the depth. Variations in CO2 were mostly explained by soil temperature at deeper soil layers, while water content was an important driver at the surface (within the first 10 cm), where CO2 pulses were induced by rainfall events. The soil effluxes were equal to the CO2 production for most of the time, suggesting that the site reached near steady-state conditions. The fluxes estimated from the CO2 profiles were highly correlated to the direct measurements when the soil was neither very dry nor very wet. This suggests that a better parameterization of the soil CO2 diffusivity is required for these soil moisture extremes.
  • Thumbnail Image
    Item
    The relationship between reference canopy conductance and simplified hydraulic architecture
    (2009-06) Novick, Kimberly A.; Oren, Ram; Stoy, Paul C.; Juang, Jehn-Yih; Siqueira, Mario B. S.; Katul, Gabriel G.
    Terrestrial ecosystems are dominated by vascular plants that form a mosaic of hydraulic conduits to water movement from the soil to the atmosphere. Together with canopy leaf area, canopy stomatal conductance regulates plant water use and thereby photosynthesis and growth. Although stomatal conductance is coordinated with plant hydraulic conductance, governing relationships across species has not yet been formulated at a practical level that can be employed in large-scale models. Here, combinations of published conductance measurements obtained with several methodologies across boreal to tropical climates were used to explore relationships between canopy conductance rates and hydraulic constraints. A parsimonious hydraulic model requiring sapwood-to-leaf area ratio and canopy height generated acceptable agreement with measurements across a range of biomes (r2 = 0.75) . The results suggest that, at long time scales, the functional convergence among ecosystems in the relationship between water-use and hydraulic architecture eclipses inter-specific variation in physiology and anatomy of the transport system. Prognostic applicability of this model requires independent knowledge of sapwood-to-leaf area. In this study, we did not find a strong relationship between sapwood-to-leaf area and physical or climatic variables that are readily determinable at coarse scales, though the results suggest that climate may have a mediating influence on the relationship between sapwood-to-leaf area and height. Within temperate forests, canopy height alone explained a large amount of the variance in reference canopy conductance (r2 = 0.68) and this relationship may be more immediately applicable in the terrestrial ecosystem models.
  • Thumbnail Image
    Item
    Investigating a Hierarchy of Eulerian Closure Models for Scalar Transfer Inside Forested Canopies
    (2008-04) Juang, Jehn-Yih; Katul, Gabriel G.; Siqueira, Mario B. S.; Stoy, Paul C.; McCarthy, Heather R.
    Modelling the transfer of heat, water vapour, and CO2 between the biosphere and the atmosphere is made difficult by the complex two-way interaction between leaves and their immediate microclimate. When simulating scalar sources and sinks inside canopies on seasonal, inter-annual, or forest development time scales, the so-called well-mixed assumption (WMA) of mean concentration (i.e. vertically constant inside the canopy but dynamically evolving in time) is often employed. The WMA eliminates the need to model how vegetation alters its immediate microclimate, which necessitates formulations that utilize turbulent transport theories. Here, two inter-related questions pertinent to the WMA for modelling scalar sources, sinks, and fluxes at seasonal to inter-annual time scales are explored: (1) if the WMA is to be replaced so as to resolve this two-way interaction, how detailed must the turbulent transport model be? And (2) what are the added predictive skills gained by resolving the two-way interaction vis-à-vis other uncertainties such as seasonal variations in physiological parameters. These two questions are addressed by simulating multi-year mean scalar concentration and eddy-covariance scalar flux measurements collected in a Loblolly pine (P. taeda L.) plantation near Durham, North Carolina, U.S.A. using turbulent transport models ranging from K-theory (or first-order closure) to third-order closure schemes. The multi-layer model calculations with these closure schemes were contrasted with model calculations employing the WMA. These comparisons suggested that (i) among the three scalars, sensible heat flux predictions are most biased with respect to eddy-covariance measurements when using the WMA, (ii) first-order closure schemes are sufficient to reproduce the seasonal to inter-annual variations in scalar fluxes provided the canonical length scale of turbulence is properly specified, (iii) second-order closure models best agree with measured mean scalar concentration (and temperature) profiles inside the canopy as well as scalar fluxes above the canopy, (iv) there are no clear gains in predictive skills when using third-order closure schemes over their second-order closure counterparts. At inter-annual time scales, biases in modelled scalar fluxes incurred by using the WMA exceed those incurred when correcting for the seasonal amplitude in the maximum carboxylation capacity (V cmax, 25) provided its mean value is unbiased. The role of local thermal stratification inside the canopy and possible computational simplifications in decoupling scalar transfer from the generation of the flow statistics are also discussed. “The tree, tilting its leaves to capture bullets of light; inhaling, exhaling; its many thousand stomata breathing, creating the air”. Ruth Stone, 2002, In the Next Galaxy"
  • Thumbnail Image
    Item
    Role of vegetation in determining carbon sequestration along ecological succession in the southeastern United States
    (2008-06) Stoy, Paul C.; Katul, Gabriel G.; Siqueira, Mario B. S.; Juang, Jehn-Yih; Novick, Kimberly A.; McCarthy, Heather R.; Oishi, A. Christopher; Oren, Ram
    Vegetation plays a central role in controlling terrestrial carbon (C) exchange, but quantifying its impacts on C cycling on time scales of ecological succession is hindered by a lack of long‐term observations. The net ecosystem exchange of carbon (NEE) was measured for several years in adjacent ecosystems that represent distinct phases of ecological succession in the southeastern USA. The experiment was designed to isolate the role of vegetation – apart from climate and soils – in controlling biosphere–atmosphere fluxes of CO2 and water vapor. NEE was near zero over 5 years at an early successional old‐field ecosystem (OF). However, mean annual NEE was nearly equal, approximately −450 g C m−2 yr−1, at an early successional planted pine forest (PP) and a late successional hardwood forest (HW) due to the sensitivity of the former to drought and ice storm damage. We hypothesize that these observations can be explained by the relationships between gross ecosystem productivity (GEP), ecosystem respiration (RE) and canopy conductance, and long‐term shifts in ecosystem physiology in response to climate to maintain near‐constant ecosystem‐level water‐use efficiency (EWUE). Data support our hypotheses, but future research should examine if GEP and RE are causally related or merely controlled by similar drivers. At successional time scales, GEP and RE observations generally followed predictions from E. P. Odum's ‘Strategy of Ecosystem Development’, with the surprising exception that the relationship between GEP and RE resulted in large NEE at the late successional HW. A practical consequence of this research suggests that plantation forestry may confer no net benefit over the conservation of mature forests for C sequestration.
  • Thumbnail Image
    Item
    Eco-hydrological controls on summertime convective rainfall triggers
    (2007-01) Juang, Jehn-Yih; Katul, Gabriel G.; Porporato, Amilcare; Stoy, Paul C.; Siqueira, Mario B. S.; Detto, Matteo; Kim, Hyun-Seok; Oren, Ram
    Triggers of summertime convective rainfall depend on numerous interactions and feedbacks, often compounded by spatial variability in soil moisture and its impacts on vegetation function, vegetation composition, terrain, and all the complex turbulent entrainment processes near the capping inversion. To progress even within the most restricted and idealized framework, many of the governing processes must be simplified and parameterized. In this work, a zeroth‐order representation of the dynamical processes that control convective rainfall triggers – namely land surface fluxes of heat and moisture – is proposed and used to develop a semianalytical model to explore how differential sensitivities of various ecosystems to soil moisture states modify convective rainfall triggers. The model is then applied to 4 years (2001–2004) of half‐hourly precipitation, soil moisture, environmental, and eddy‐covariance surface heat flux data collected at a mixed hardwood forest (HW), a maturing planted loblolly pine forest (PP), and an abandoned old field (OF) experiencing the same climatic and edaphic conditions. We found that the sensitivity of PP to soil moisture deficit enhances the trigger of convective rainfall relative to HW and OF, with enhancements of about 25% and 30% for dry moisture states, and 5% and 15% for moist soil moisture states, respectively. We discuss the broader implications of these findings on potential modulations of convective rainfall triggers induced by projected large‐scale changes in timberland composition within the Southeastern United States.
  • Thumbnail Image
    Item
    An evaluation of methods for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration
    (2006-12) Stoy, Paul C.; Katul, Gabriel G.; Siqueira, Mario B. S.; Juang, Jehn-Yih; Novick, Kimberly A.; Uebelherr, Joshua M.; Oren, Ram
    We measured net ecosystem CO2 exchange (NEE) using the eddy covariance (EC) technique for 4 years at adjoining old field (OF), planted pine (PP) and hardwood forest (HW) ecosystems in the Duke Forest, NC. To compute annual sums of NEE and its components – gross ecosystem productivity (GEP) and ecosystem respiration (RE) – different ‘flux partitioning’ models (FPMs) were tested and the resulting C flux estimates were compared against published estimates from C budgeting approaches, inverse models, physiology-based forward models, chamber respiration measurements, and constraints on assimilation based on sapflux and evapotranspiration measurements. Our analyses demonstrate that the more complex FPMs, particularly the ‘non-rectangular hyperbolic method’, consistently produced the most reasonable C flux estimates. Of the FPMs that use nighttime data to estimate RE, one that parameterized an exponential model over short time periods generated predictions that were closer to expected flux values. To explore how much ‘new information’ was injected into the data by the FPMs, we used formal information theory methods and computed the Shannon entropy for: (1) the probability density, to assess alterations to the flux measurement distributions, and (2) the wavelet energy spectra, to assess alterations to the internal autocorrelation within the NEE time series. Based on this joint analysis, gap-filling had little impact on the IC of daytime data, but gap-filling significantly altered nighttime data in both the probability and wavelet spectral domains.
  • Thumbnail Image
    Item
    Are ecosystem carbon inputs and outputs coupled at short time scales? A case study from adjacent pine and hardwood forests using impulse-response analysis
    (2007-06) Stoy, Paul C.; Palmroth, Sari; Oishi, A. Christopher; Siqueira, Mario B. S.; Juang, Jehn-Yih; Novick, Kimberly A.; Ward, Eric J.; Katul, Gabriel G.; Oren, Ram
    A number of recent studies have attributed a large proportion of soil respiration (Rsoil) to recently photoassimilated carbon (C). Time lags (τPR) associated with these pulses of photosynthesis and responses of Rsoil have been found on time scales of hours to weeks for different ecosystems, but most studies find evidence for τPR on the order of 1–5 d. We showed that such time scales are commensurate with CO2 diffusion time scales from the roots to the soil surface, and may thus be independent from photosynthetic pulses. To further quantify the role of physical (i.e. edaphic) and biological (i.e. vegetative) controls on such lags, we investigated τPR at adjacent planted pine (PP) and hardwood (HW) forest ecosystems over six and four measurement years, respectively, using both autocorrelation analysis on automated soil surface flux measurements and their lagged cross‐correlations with drivers for and surrogates of photosynthesis. Evidence for τPR on the order of 1–3 d was identified in both ecosystems and using both analyses, but this lag could not be attributed to recently photoassimilated C because the same analysis yielded comparable lags at HW during leaf‐off periods. Future efforts to model ecosystem C inputs and outputs in a pulse–response framework must combine measurements of transport in the physical and biological components of terrestrial ecosystems.
  • Thumbnail Image
    Item
    Carbon dioxide and water vapor exchange in a warm temperate grassland
    (2004-01) Novick, Kimberly A.; Stoy, Paul C.; Katul, Gabriel G.; Ellsworth, D. S.; Siqueira, Mario B. S.; Juang, Jehn-Yih; Oren, Ram
    Grasslands cover about 40% of the ice-free global terrestrial surface, but their contribution to local and regional water and carbon fluxes and sensitivity to climatic perturbations such as drought remains uncertain. Here, we assess the direction and magnitude of net ecosystem carbon exchange (NEE) and its components, ecosystem carbon assimilation (A c) and ecosystem respiration (R E), in a southeastern United States grassland ecosystem subject to periodic drought and harvest using a combination of eddy-covariance measurements and model calculations. We modeled A c and evapotranspiration (ET) using a big-leaf canopy scheme in conjunction with ecophysiological and radiative transfer principles, and applied the model to assess the sensitivity of NEE and ET to soil moisture dynamics and rapid excursions in leaf area index (LAI) following grass harvesting. Model results closely match eddy-covariance flux estimations on daily, and longer, time steps. Both model calculations and eddy-covariance estimates suggest that the grassland became a net source of carbon to the atmosphere immediately following the harvest, but a rapid recovery in LAI maintained a marginal carbon sink during summer. However, when integrated over the year, this grassland ecosystem was a net C source (97 g C m−2 a−1) due to a minor imbalance between large A c (−1,202 g C m−2 a−1) and R E (1,299 g C m−2 a−1) fluxes. Mild drought conditions during the measurement period resulted in many instances of low soil moisture (θ<0.2 m3m−3), which influenced A c and thereby NEE by decreasing stomatal conductance. For this experiment, low θ had minor impact on R E. Thus, stomatal limitations to A c were the primary reason that this grassland was a net C source. In the absence of soil moisture limitations, model calculations suggest a net C sink of −65 g C m−2 a−1 assuming the LAI dynamics and physiological properties are unaltered. These results, and the results of other studies, suggest that perturbations to the hydrologic cycle are key determinants of C cycling in grassland ecosystems.
  • Thumbnail Image
    Item
    A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes
    (2006-01) Richardson, Andrew D.; Hollinger, David Y.; Burba, George G.; Davis, Kenneth J.; Lawrence B., Flanagan; Katul, Gabriel G.; Munger, J. William; Ricciuto, Daniel M.; Stoy, Paul C.; Suyker, Andrew E.; Verma, Shashi B.; Wofsy, Steven C.
    Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE) and CO2 (FCO2) represent the “true” flux plus or minus potential random and systematic measurement errors. Here, we use data from seven sites in the AmeriFlux network, including five forested sites (two of which include “tall tower” instrumentation), one grassland site, and one agricultural site, to conduct a cross-site analysis of random flux error. Quantification of this uncertainty is a prerequisite to model-data synthesis (data assimilation) and for defining confidence intervals on annual sums of net ecosystem exchange or making statistically valid comparisons between measurements and model predictions. We differenced paired observations (separated by exactly 24 h, under similar environmental conditions) to infer the characteristics of the random error in measured fluxes. Random flux error more closely follows a double-exponential (Laplace), rather than a normal (Gaussian), distribution, and increase as a linear function of the magnitude of the flux for all three scalar fluxes. Across sites, variation in the random error follows consistent and robust patterns in relation to environmental variables. For example, seasonal differences in the random error for H are small, in contrast to both LE and FCO2, for which the random errors are roughly three-fold larger at the peak of the growing season compared to the dormant season. Random errors also generally scale with Rn (H and LE) and PPFD (FCO2). For FCO2 (but not H or LE), the random error decreases with increasing wind speed. Data from two sites suggest that FCO2 random error may be slightly smaller when a closed-path, rather than open-path, gas analyzer is used.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.