Land Resources & Environmental Sciences

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/11

The Department of Land Resources and Environmental Sciences at Montana State Universityoffers integrative, multi-disciplinary, science-based degree programs at the B.S., M.S., and Ph.D. levels.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Are Adult Mosquito Control Products (Adulticides) Harmful? A Review of the Potential Human Health Impacts from Exposure to Naled and Dichlorvos (DDVP)
    (MDPI AG, 2023-12) Mendoza, Daniel L.; Peterson, Robert K. D.; Bonds, Jane A. S.; White, Gregory S.; Faraji, Ary
    We performed a thorough systematic review of published literature to determine potential links between human health impacts and naled, a registered adult mosquito control product (adulticide), and its major degradate, dichlorvos (DDVP). A search query was performed on 8 September 2023, capturing all articles published up to that date on the Scopus and PubMed databases. Inclusion criteria were the presence of either pesticide and a measured or modeled human health outcome or risk. The search string resulted in 382 articles; however, 354 articles were excluded, resulting in only 28 articles that met the inclusion criteria. The studies that directly relate to aerosolized ultra-low volume (ULV) mosquito control applications did not report any associated deleterious human health outcomes. Results from the reviewed papers displayed no negative health effects or led to inconclusive results. No studies showed adverse health effects from aerial ULV applications for mosquito management. Our findings are congruent with the United States Environmental Protection Agency and Centers for Disease Control and Prevention recommendations that aerial applications of naled, following label parameters, do not pose an adverse risk exposure to humans, wildlife, and the environment.
  • Thumbnail Image
    Item
    Larval mosquito management and risk to aquatic ecosystems: A comparative approach including current tactics and gene-drive Anopheles techniques
    (Springer Science and Business Media LLC, 2022-08) Peterson, Robert K. D.; Rolston, Marni G.
    Genetic engineering of mosquitoes represents a promising tactic for reducing human suffering from malaria. Gene-drive techniques being developed that suppress or modify populations of Anopheles gambiae have the potential to be used with, or even possibly obviate, microbial and synthetic insecticides. However, these techniques are new and therefore there is attendant concern and uncertainty from regulators, policymakers, and the public about their environmental risks. Therefore, there is a need to assist decision-makers and public health stewards by assessing the risks associated with these newer mosquito management tactics so the risks can be compared as a basis for informed decision making. Previously, the effect of gene-drive mosquitoes on water quality in Africa was identified as a concern by stakeholders. Here, we use a comparative risk assessment approach for the effect of gene-drive mosquitoes on water quality in Africa. We compare the use of existing larvicides and the proposed genetic techniques in aquatic environments. Based on our analysis, we conclude that the tactic of gene-drive Anopheles for malaria management is unlikely to result in risks to aquatic environments that exceed current tactics for larval mosquitoes. As such, these new techniques would likely comply with currently recommended safety standards.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.