Land Resources & Environmental Sciences

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/11

The Department of Land Resources and Environmental Sciences at Montana State Universityoffers integrative, multi-disciplinary, science-based degree programs at the B.S., M.S., and Ph.D. levels.

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Evaluation of sustained release mineral boluses as a long-term nutrient delivery method for beef cattle
    (2021-09) Carlisle, Tanner J.; Wyffels, Samuel A.; Stafford, Steve D.; Taylor, Anna R.; Van Emon, Megan L.; DelCurto, Timothy
    Two studies were conducted to evaluate the efficacy of sustained release mineral boluses as an alternative nutrient delivery method for beef cattle. For both studies 16 ruminally-cannulated cows were used in a completely randomized design. In study 1, we evaluated degradation rates of two bolus prototypes and cow age (2-yr-old versus 3-yr-old cows) over an 87-d study period. In study 2, we evaluated two bolus types (90-d degradation target versus 180-d degradation target), as well as two diet qualities contrasting a low-quality high-fiber forage (> 600 g/kg neutral detergent fiber and < 80 g/kg crude protein, dry matter basis) and high-quality low-fiber forage (< 500 g/kg neutral detergent fiber and> 150 g/kg crude protein, dry matter basis). For both Study 1 & 2, intake and digestion periods were conducted to evaluate cow age (study 1) or diet quality (study 2) effects on intake and rumen/reticulum function. In study 1, models containing an asymptotic effect of day and an interaction between day and bolus type were the best supported of the candidate models for bolus degradation rate. Cow age did not affect (P= 0.48) bolus degradation rates ( = -0.81 ± 1.13) and degradation rates were greater (P < 0.01) for bolus prototype B compared to bolus A ( prototype B = -20.39 ± 1.13; prototype A = -9.64 ± 0.81). Bolus degradation rate displayed an asymptotic relationship (P < 0.01) to bolus surface area for prototype A ( = 5.83 ± 0.57) and a linear relationship (P < 0.01) for prototype B ( = 0.001 ± 0.0001). In study 2, models containing a linear effect of day and an interaction between day and diet were the best supported of the candidate models for the degradation rate of the 90-d and 180-d prototype. In addition, both bolus protoypes displayed a diet quality × time interaction (P < 0.01) for bolus degradation rate. Cattle treated with the 90-d bolus and fed a high-quality diet had a greater (P < 0.01) degradation rate ( High-quality = -2.64 ± 0.08; Low-quality = -1.97 ± 0.10) than the cows that were fed a low-quality diet. In contrast, cattle treated with the 180-d bolus had an inverse effect (P < 0.01), with bolus degradation rates greater ( Low-quality = -0.09 ± 0.007; High-quality = -0.04 ± 0.005) with cows on the low-quality diet versus the high-quality diet. Across both studies, two of four bolus prototypes met target release rates at 90 days. However, bolus prototype degradation characteristics varied and were influenced by diet quality.
  • Thumbnail Image
    Item
    Characterization of resistance to Cephus cinctus Norton (Hymenoptera: Cephidae) in barley germplasm
    (2018-04) Varella, Andrea C.; Talbert, Luther E.; Achhami, Buddhi B.; Blake, Nancy K.; Hofland, Megan L.; Sherman, Jamie D.; Lamb, Peggy F.; Reddy, Gadi V. P.; Weaver, David K.
    Most barley cultivars have some degree of resistance to the wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae). Damage caused by WSS is currently observed in fields of barley grown in the Northern Great Plains, but the impact of WSS damage among cultivars due to genetic differences within the barley germplasm is not known. Specifically, little is known about the mechanisms underlying WSS resistance in barley. We characterized WSS resistance in a subset of the spring barley CAP (Coordinated Agricultural Project) germplasm panel containing 193 current and historically important breeding lines from six North American breeding programs. Panel lines were grown in WSS infested fields for two consecutive years. Lines were characterized for stem solidness, stem cutting, WSS infestation (antixenosis), larval mortality (antibiosis), and parasitism (indirect plant defense). Variation in resistance to WSS in barley was compared to observations made for solid-stemmed resistant and hollow-stemmed susceptible wheat lines. Results indicate that both antibiosis and antixenosis are involved in the resistance of barley to the WSS, but antibiosis seems to be more prevalent. Almost all of the barley lines had greater larval mortality than the hollow-stemmed wheat lines, and only a few barley lines had mortality as low as that observed in the solid-stemmed wheat line. Since barley lines lack solid stems, it is apparent that barley has a different form of antibiosis. Our results provide information for use of barley in rotation to control the WSS and may provide a basis for identification of new approaches for improving WSS resistance in wheat.
  • Thumbnail Image
    Item
    A Meta-Analysis of Field Bindweed Convolvulus arvensis Management in Annual and Perennial Systems
    (2018-07) Davis, Stacy C.; Mangold, Jane M.; Menalled, Fabian D.; Orloff, Noelle; Miller, Zachariah J.; Lehnhoff, Erik A.
    Field bindweed (Convolvulus arvensis L.) is a persistent, perennial weed species that infests a variety of temperate habitats around the globe. To evaluate the efficacy of general management approaches and impacts on crop yield and to identify research gaps, we conducted a series of meta-analyses using published studies focusing on C. arvensis management in annual cropping and perennial systems. Our analysis of 48 articles (560 data points) conducted in annual systems indicated that 95% of data points measured efficacy over short time frames (within 2 yr of treatment). Furthermore, only 27% of data points reported impacts of C. arvensis management on crop yield. In annual systems, herbicide control dominated the literature (~80% of data points) and was an effective management technique up to 2 yr posttreatment. Integrated management, with or without herbicides, and three nonchemical techniques were similarly effective as herbicide at reducing C. arvensis up to 2 yr posttreatment. In addition, integrated approaches, with or without herbicides, and two nonchemical techniques had positive effects on crop yield. There were few differences among herbicide mechanism of action groups on C. arvensis abundance in annual systems. There were only nine articles (28 data points) concerning C. arvensis management in perennial systems (e.g., pasture, rangeland, lawn), indicating more research effort has been directed toward annual systems. In perennial systems, biocontrol, herbicide, and non-herbicide integrated management techniques were equally effective at reducing C. arvensis, while competition and grazing were not effective. Overall, our results demonstrate that while chemical control of C. arvensis is generally effective and well studied, integrated and nonchemical control practices can perform equally well. We also documented the need for improved monitoring of the efficacy of management practices over longer time frames and including effects on desired vegetation to develop sustainable weed management programs.
  • Thumbnail Image
    Item
    A Meta-analysis of Canada Thistle Cirsium arvense Management
    (2018-07) Davis, Stacy C.; Mangold, Jane M.; Menalled, Fabian D.; Orloff, Noelle; Miller, Zachariah J.; Lehnhoff, Erik A.
    Although stand-alone and integrated management techniques have been cited as viable approaches to managing Canada thistle [Cirsium arvense (L.) Scop.], it continues to impact annual cropping and perennial systems worldwide. We conducted meta-analyses assessing effectiveness of management techniques and herbicide mechanism of action groups for controlling C. arvense using 55 studies conducted in annual cropping systems and 45 studies in perennial systems. Herbicide was the most studied technique in both types of systems and was effective at reducing C. arvense. However, integrated multitactic techniques, with or without herbicides, were more effective than sole reliance on herbicides for long-term control in both annual cropping and perennial systems. A variety of management techniques such as biocontrol, crop diversification, mowing, and soil disturbance provided control similar to that of herbicide. Our results suggest that many management techniques aimed at reducing C. arvense can also improve crop yield or abundance of desired plants. This study highlights the need to devote more research to nonchemical and integrated management approaches for C. arvense control.
  • Thumbnail Image
    Item
    Bioenergy with Carbon Capture and Storage (BECCS) in the Upper Missouri River Basin
    (Montana State University, 2017-04) Bauer, Brad; Poulter, Benjamin; Royem, Alisa; Stoy, Paul C.; Taylor, Suzi
    A team of scientists from Montana State University (MSU), the University of Wyoming (UW) and the University of South Dakota (USD) has received funding from the National Science Foundation that is bringing $6 million to these states. The team will use computer models and field experiments to study what might happen over the next 100 years if we adopt a new energy system called BECCS. The project’s study region is the Upper River Missouri Basin, but the findings could help all regions better understand the impacts of BECCS on communities and citizens, agriculture and ecosystem services.
  • Thumbnail Image
    Item
    Characterization of resistance to the wheat stem sawfly in spring wheat landrace accessions from targeted geographic regions of the world
    (2017-07) Varella, Andrea C.; Weaver, David K.; Cook, Jason P.; Blake, Nancy K.; Hofland, Megan L.; Lamb, Peggy F.; Talbert, Luther E.
    Plant landraces have long been recognized as potential gene pools for biotic and abiotic stress-related genes. This research used spring wheat landrace accessions to identify new sources of resistance to the wheat stem sawfly (WSS) (Cephus cinctus Norton), an important insect pest of wheat in the northern Great Plains of North America. Screening efforts targeted 1409 accessions from six geographical areas of the world where other species of grain sawflies are endemic or where a high frequency of accessions possesses the resistance characteristic of solid stems. Resistance was observed in approximately 14% of accessions. Half of the lines displayed both antixenosis and antibiosis types of resistance. Among the resistant accessions, 41% had solid or semi-solid stems. Molecular genetic screening for haplotypes at the solid stem QTL, Qss.msub.3BL, showed that 15% of lines shared the haplotype derived from \'S-615\', the original donor of the solid stem trait to North American germplasm. Other haplotypes associated with solid stems were also observed. Haplotype diversity was greater in the center of origin of wheat. Evaluation of a representative set of resistant landrace accessions in replicated field trials at four locations over a three year period identified accessions with potential genes for reduced WSS infestation, increased WSS mortality, and increased indirect defense via parasitoids. Exploitation of distinct types of plant defense will expand the genetic diversity for WSS resistance currently present in elite breeding lines.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.