Land Resources & Environmental Sciences
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/11
The Department of Land Resources and Environmental Sciences at Montana State Universityoffers integrative, multi-disciplinary, science-based degree programs at the B.S., M.S., and Ph.D. levels.
Browse
11 results
Search Results
Item The Embryological Landscape of Mayer-Rokitansky-Kuster-Hauser Syndrome: Genetics and Environmental Factors(Yale Journal of Biology and Medicine, 2021-12) Kyei-Barffour, Isaac; Margetts, Miranda; Vash-Margita, Alla; Pelosi, EmanueleMayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a disorder caused by Müllerian ducts dysgenesis affecting 1 in 5000 women with a typical 46,XX karyotype. The etiology of MRKH syndrome is complex and largely unexplained. Familial clustering suggests a genetic component and the spectrum of clinical presentations seems consistent with an inheritance pattern characterized by incomplete penetrance and variable expressivity. Mutations of several candidate genes have been proposed as possible causes based on genetic analyses of human patients and animal models. In addition, studies of monozygotic twins with discordant phenotypes suggest a role for epigenetic changes following potential exposure to environmental compounds. The spectrum of clinical presentations is consistent with intricate disruptions of shared developmental pathways or signals during early organogenesis. However, the lack of functional validation and translational studies have limited our understanding of the molecular mechanisms involved in this condition. The clinical management of affected women, including early diagnosis, genetic testing of MRKH syndrome, and the implementation of counseling strategies, is significantly impeded by these knowledge gaps. Here, we illustrate the embryonic development of tissues and organs affected by MRKH syndrome, highlighting key pathways that could be involved in its pathogenesis. In addition, we will explore the genetics of this condition, as well as the potential role of environmental factors, and discuss their implications to clinical practice.Item Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes)(2014-07) Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Ramaley, R. F.; Schuster, Stephan C.; Steinke, L.; Bryant, Donald A.The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.Item Draft Genome Sequence of a Sulfide-Oxidizing, Autotrophic Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus sp. Strain MS-G (Chloroflexi)(2014-09) Thiel, Vera; Tomsho, Lynn P.; Burhans, Richard; Schuster, Stephan C.; Bryant, Donald A.; Ward, David M.The draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain MS-G (Chloroflexi), isolated from Mushroom Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 4,784,183 bp in 251 contigs. The draft genome is predicted to encode 4,059 protein coding genes, 49 tRNA encoding genes, and 3 rRNA operons.Item Occurrence of Far-Red Light Photoacclimation (FaRLiP) in Diverse Cyanobacteria(2014-12) Gan, Fei; Shen, Gaozhong; Bryant, Donald A.Cyanobacteria have evolved a number of acclimation strategies to sense and respond to changing nutrient and light conditions. Leptolyngbya sp. JSC-1 was recently shown to photoacclimate to far-red light by extensively remodeling its photosystem (PS) I, PS II and phycobilisome complexes, thereby gaining the ability to grow in far-red light. A 21-gene photosynthetic gene cluster (rfpA/B/C, apcA2/B2/D2/E2/D3, psbA3/D3/C2/B2/ H2/A4, psaA2/B2/L2/I2/F2/J2) that is specifically expressed in far-red light encodes the core subunits of the three major photosynthetic complexes. The growth responses to far-red light were studied here for five additional cyanobacterial strains, each of which has a gene cluster similar to that in Leptolyngbya sp. JSC-1. After acclimation all five strains could grow continuously in far-red light. Under these growth conditions each strain synthesizes chlorophylls d, f and a after photoacclimation, and each strain produces modified forms of PS I, PS II (and phycobiliproteins) that absorb light between 700 and 800 nm. We conclude that these photosynthetic gene clusters are diagnostic of the capacity to photoacclimate to and grow in far-red light. Given the diversity of terrestrial environments from which these cyanobacteria were isolated, it is likely that FaRLiP plays an important role in optimizing photosynthesis in terrestrial environments.Item Comparative genomics and functional analysis of rhamnose catabolic pathways and regulons in Bacteria(2013-12) Rodionova, I. A.; Li, X.; Thiel, Vera; Stolyar, S.; Stanton, K.; Frederickson, J. K.; Bryant, Donald A.; Osterman, A. L.; Best, A. A.; Rodionov, D. A.L-rhamnose (L-Rha) is a deoxy-hexose sugar commonly found in nature. L-Rha catabolic pathways were previously characterized in various bacteria including Escherichia coli. Nevertheless, homology searches failed to recognize all the genes for the complete L-Rha utilization pathways in diverse microbial species involved in biomass decomposition. Moreover, the regulatory mechanisms of L-Rha catabolism have remained unclear in most species. A comparative genomics approach was used to reconstruct the L-Rha catabolic pathways and transcriptional regulons in the phyla Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, and Thermotogae. The reconstructed pathways include multiple novel enzymes and transporters involved in the utilization of L-Rha and L-Rha-containing polymers. Large-scale regulon inference using bioinformatics revealed remarkable variations in transcriptional regulators for L-Rha utilization genes among bacteria. A novel bifunctional enzyme, L-rhamnulose-phosphate aldolase (RhaE) fused to L-lactaldehyde dehydrogenase (RhaW), which is not homologous to previously characterized L-Rha catabolic enzymes, was identified in diverse bacteria including Chloroflexi, Bacilli, and Alphaproteobacteria. By using in vitro biochemical assays we validated both enzymatic activities of the purified recombinant RhaEW proteins from Chloroflexus aurantiacus and Bacillus subtilis. Another novel enzyme of the L-Rha catabolism, L-lactaldehyde reductase (RhaZ), was identified in Gammaproteobacteria and experimentally validated by in vitro enzymatic assays using the recombinant protein from Salmonella typhimurium. C. aurantiacus induced transcription of the predicted L-Rha utilization genes when L-Rha was present in the growth medium and consumed L-Rha from the medium. This study provided comprehensive insights to L-Rha catabolism and its regulation in diverse Bacteria.Item Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi(2012-05) Liu, Zhenhua; Frigaard, N. U.; Vogl, K.; Iino, T.; Ohkuma, M.; Overmann, J.; Bryant, Donald A.Prior to the recent discovery of Ignavibacterium album (I. album), anaerobic photoautotrophic green sulfur bacteria (GSB) were the only members of the bacterial phylum Chlorobi that had been grown axenically. In contrast to GSB, sequence analysis of the 3.7-Mbp genome of I. album shows that this recently described member of the phylum Chlorobi is a chemoheterotroph with a versatile metabolism. I. album lacks genes for photosynthesis and sulfur oxidation but has a full set of genes for flagella and chemotaxis. The occurrence of genes for multiple electron transfer complexes suggests that I. album is capable of organoheterotrophy under both oxic and anoxic conditions. The occurrence of genes encoding enzymes for CO2 fixation as well as other enzymes of the reductive TCA cycle suggests that mixotrophy may be possible under certain growth conditions. However, known biosynthetic pathways for several amino acids are incomplete; this suggests that I. album is dependent upon on exogenous sources of these metabolites or employs novel biosynthetic pathways. Comparisons of I. album and other members of the phylum Chlorobi suggest that the physiology of the ancestors of this phylum might have been quite different from that of modern GSB.Item Genome Sequence of the Thermophilic Cyanobacterium Thermosynechococcus sp. Strain NK55a(2014-01) Stolyar, S.; Liu, Zhenhua; Thiel, Vera; Tomsho, Lynn P.; Pinel, N.; Nelson, William C.; Lindemann, S.; Romine, Margaret F.; Haruta, S.; Schuster, Stephan C.; Bryant, Donald A.; Frederickson, J. K.The genome of the unicellular cyanobacterium Thermosynechococcus sp. strain NK55a, isolated from the Nakabusa hot spring, Nagano Prefecture, Japan, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to contain 2,358 protein-encoding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified.Item Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium “Chlorochromatium aggregatum.”(2013-11) Liu, Zhenhua; Müller, J.; Li, T.; Alvey, R. M.; Vogl, K.; Frigaard, N. U.; Rockwell, Nathan C.; Tomsho, Lynn P.; Schuster, Stephan C.; Henke, P.; Rohde, M.; Overmann, J.; Bryant, Donald A.Background: ‘Chlorochromatium aggregatum’ is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. ‘Chlorochromatium aggregatum’ is a motile, barrel-shaped aggregate formed from a single cell of ‘Candidatus Symbiobacter mobilis”, a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium. Results: We analyzed the complete genome sequences of both organisms to understand the basis for this symbiosis. Chl. chlorochromatii has acquired relatively few symbiosis-specific genes; most acquired genes are predicted to modify the cell wall or function in cell-cell adhesion. In striking contrast, ‘Ca. S. mobilis’ appears to have undergone massive gene loss, is probably no longer capable of independent growth, and thus may only reproduce when consortia divide. A detailed model for the energetic and metabolic bases of the dependency of ‘Ca. S. mobilis’ on Chl. chlorochromatii is described. Conclusions: Genomic analyses suggest that three types of interactions lead to a highly sophisticated relationship between these two organisms. Firstly, extensive metabolic exchange, involving carbon, nitrogen, and sulfur sources as well as vitamins, occurs from the epibiont to the central bacterium. Secondly, ‘Ca. S. mobilis’ can sense and move towards light and sulfide, resources that only directly benefit the epibiont. Thirdly, electron cycling mechanisms, particularly those mediated by quinones and potentially involving shared protonmotive force, could provide an important basis for energy exchange in this and other symbiotic relationships.Item Community structure and function of high-temperature phototrophic microbial mats inhabiting diverse geothermal environments.(2013-06) Klatt, Christian G.; Inskeep, William P.; Herrgard, M.; Jay, Zackary J.; Rusch, Douglas B.; Tringe, Susannah G.; Parenteau, M. N.; Ward, David M.; Boomer, S. M.; Bryant, Donald A.Six phototrophic microbial mat communities from different geothermal springs (YNP) were studied using metagenome sequencing and geochemical analyses. The primary goals of this work were to determine differences in community composition of high-temperature phototrophic mats distributed across the Yellowstone geothermal ecosystem, and to identify metabolic attributes of predominant organisms present in these communities that may correlate with environmental attributes important in niche differentiation. Random shotgun metagenome sequences from six phototrophic communities (average ∼53 Mbp/site) were subjected to multiple taxonomic, phylogenetic, and functional analyses. All methods, including G + C content distribution, MEGAN analyses, and oligonucleotide frequency-based clustering, provided strong support for the dominant community members present in each site. Cyanobacteria were only observed in non-sulfidic sites; de novo assemblies were obtained for Synechococcus-like populations at Chocolate Pots (CP_7) and Fischerella-like populations at White Creek (WC_6). Chloroflexi-like sequences (esp. Roseiflexus and/or Chloroflexus spp.) were observed in all six samples and contained genes involved in bacteriochlorophyll biosynthesis and the 3-hydroxypropionate carbon fixation pathway. Other major sequence assemblies were obtained for a Chlorobiales population from CP_7 (proposed family Thermochlorobacteriaceae), and an anoxygenic, sulfur-oxidizing Thermochromatium-like (Gamma-proteobacteria) population from Bath Lake Vista Annex (BLVA_20). Additional sequence coverage is necessary to establish more complete assemblies of other novel bacteria in these sites (e.g., Bacteroidetes and Firmicutes); however, current assemblies suggested that several of these organisms play important roles in heterotrophic and fermentative metabolisms. Definitive linkages were established between several of the dominant phylotypes present in these habitats and important functional processes such as photosynthesis, carbon fixation, sulfur oxidation, and fermentation.Item Synechococcus sp. strain PCC 7002 transcriptome: acclimation to temperature, salinity, oxidative stress, and mixotrophic growth conditions(2012-10) Ludwig, M.; Bryant, Donald A.Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present.