Proton Transfer in Proton Glasses

dc.contributor.authorSchmidt, V. Hugo
dc.date.accessioned2016-04-15T17:05:02Z
dc.date.available2016-04-15T17:05:02Z
dc.date.issued1998-07-01
dc.description.abstractProton intrabond transfer in Osingle bondH⋯O bonds is the mechanism for dynamic behavior of rubidium/ammonium dihydrogenphosphate mixed crystals. Because of strong proton-proton interactions, such transfer is associated with thermally activated creation of H3PO4-HPO4 intrinsic defect pairs, their hindered diffusion in a random-step fractal potential, and their eventual annihilation. Predictions of a model based on this behavior are compared with determinations on a 35% ammoniated crystal by Courtens of dielectric susceptibility and of relaxation time distribution limits calculated from Brillouin scattering results.en_US
dc.identifier.citationSchmidt, V. Hugo. “Proton Transfer in Proton Glasses.” Journal of Molecular Structure 177 (July 1988): 257–264. doi:10.1016/0022-2860(88)80092-9.en_US
dc.identifier.issn0022-2860
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/9685
dc.titleProton Transfer in Proton Glassesen_US
dc.typeArticleen_US
mus.citation.extentfirstpage257en_US
mus.citation.extentlastpage264en_US
mus.citation.journaltitleJournal of Molecular Structureen_US
mus.citation.volume177en_US
mus.data.thumbpage8en_US
mus.identifier.categoryChemical & Material Sciencesen_US
mus.identifier.categoryPhysics & Mathematicsen_US
mus.identifier.doi10.1016/0022-2860(88)80092-9en_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentPhysics.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
VHSchmidt_JMolStr_177_A1b (1).pdf
Size:
902.76 KB
Format:
Adobe Portable Document Format
Description:
Proton Transfer in Proton Glasses (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.