Magnetization, phonon, and X-ray edge absorption in barium doped BiFeO3 ceramics
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Magnetization hysteresis loops, dc and ac magnetic susceptibilities, and Raman vibrations have been characterized in (Bi1−xBax)FeO3−δ ceramics for x = 0.0, 0.05, 0.10, and 0.15 as functions of temperature. Ferromagnetic hysteresis loops were observed in Ba-doped compounds with increasing magnetization as Ba substitution increases. High-resolution synchrotron Fe K- and L2,3-edge X-ray absorptions reveal an Fe3+ valence and a modification of the Fe–O–Fe bond structure by the A-site Ba substitution. The oxygen K-edge X-ray absorption suggests that the hybridization of the O 2p and Fe 3d orbitals was reduced by the Ba2+ substitution. Field-cooled and zero-field-cooled magnetic susceptibilities reveal a spin-glass behavior, which was enhanced with increasing Ba substitution. Raman vibrations of the Bi- and Fe-sensitive E(2) and A1(1) modes reveal frequency softening and step-like anomalies in full-width-at-half-maximum in the vicinity of ~150–250 K, which were attributed to spin–phonon interaction while magnetic ordering transitions take place.