NMR spin-lattice relaxation study of Cs1‑x(NH4)xH2PO4

dc.contributor.authorMeschia, Steven C. L.
dc.contributor.authorZidansek, Aleksander
dc.contributor.authorBrandt, Dan
dc.contributor.authorSchmidt, V. Hugo
dc.date.accessioned2016-12-05T22:55:06Z
dc.date.available2016-12-05T22:55:06Z
dc.date.issued1997
dc.description.abstractSpin-lattice relaxation time T1 for 31P was measured as a function of temperature at 28.2 MHz in a powder sample of Cs1-x (NH4) x H2PO4 (CADP) crystallized from a solution with a molar ratio x = 0.2. This crystal has the same structure as CsH2PO4 (CDP), which exhibits a low-temperature pseudo-one-dimensional ferroelectric phase transition at 159 K and a superionic transition at 504 K on heating. The measured temperature dependence is explained in terms of hydrogen bond dynamics.en_US
dc.identifier.citationS.C. Meschia, A. Zidansek, D. Brandt, and V.H. Schmidt, “NMR spin-lattice relaxation study of Cs1‑x(NH4)xH2PO4,” Ferroelectrics 202, 167-171 (1997).en_US
dc.identifier.issn0015-0193
dc.identifier.urihttps://scholarworks.montana.edu/handle/1/12320
dc.language.isoen_USen_US
dc.titleNMR spin-lattice relaxation study of Cs1‑x(NH4)xH2PO4en_US
dc.typeArticleen_US
mus.citation.extentfirstpage167en_US
mus.citation.extentlastpage171en_US
mus.citation.issue1en_US
mus.citation.journaltitleFerroelectricsen_US
mus.citation.volume202en_US
mus.identifier.categoryPhysics & Mathematicsen_US
mus.identifier.doihttp://dx.doi.org/10.1080/00150199708213473en_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentPhysics.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
VHSchmidt_Ferroelectrics_202_1_A1b.pdf
Size:
516.43 KB
Format:
Adobe Portable Document Format
Description:
NMR spin-lattice relaxation study of Cs1‑x(NH4)xH2PO4 (PDF)

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
826 B
Format:
Item-specific license agreed upon to submission
Description:
Copyright (c) 2002-2022, LYRASIS. All rights reserved.